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ABSTRACT

Peters (1994) proposed the fractal market hypothesis (FMH) as an alternative to the efficient market hypothesis (EMH), following his criticism of the 
EMH. In this study, we analyse whether the fractal nature of a financial market determines its riskiness and degree of persistence as measured by its 
Hurst exponent. To do so, we utilize the Markov Switching Model to derive a persistence index (PI) to measure the level of persistence of selected 
indices on the Johannesburg stock exchange (JSE) and four other international stock markets. We conclude that markets with high Hurst exponents, 
show stronger persistence and less risk relative to markets with lower Hurst exponents.

Keywords: Fractal Market Hypothesis, Markov Switching Model, Efficient Market Hypothesis 
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1. INTRODUCTION

Peters (1996) developed the fractal market hypothesis (FMH) as 
an alternative theory to the efficient market hypothesis (EMH), 
and seeks to explain the daily randomness of market returns and 
the turbulence that comes with market crashes and crises. The 
FMH falls within the framework of chaos theory and describes 
financial markets through fractal geometry. Fractals are geometric 
shapes that can be broken into parts and still reproduce the shape 
of the whole. The FMH argues that financial markets are fractals 
with non-linear dynamic systems which have positive feedbacks 
and therefore “what happened yesterday influences what happens 
today” (Peters, 1996. p. 9). Edward Lorenz, one of the pioneers of 
chaos theory describes chaos as “…when the present determines 
the future, but the approximate present does not approximately 
determine the future” (Hand 2014. p. 45). Therefore, even with 
the existence of positive feedback in a given time series, with 
the implication that its future behaviour is influenced by initial 
conditions with no random elements involved, small differences 
in these initial conditions yield widely divergent outcomes 
thus making long-term prediction of their behaviour generally 
impossible (Boeing, 2016).

In developing the FMH, Peters (1989) applied the rescaled range 
analysis, which is used to derive the Hurst exponent (H). The Hurst 
exponent measures long-term memory in time series and relates 
to the autocorrelations in time series. It also explains the rate at 
which such autocorrelations decrease when the lags increase. 
Harold Edwin Hurst developed this exponent in hydrology while 
determining the optimum dam size of river Nile for the volatile 
drought and rain situations observed over a long period (Hurst, 
1951; Lloyd, 1966).

The Hurst exponent is also known as the “index of dependence” 
and quantifies the relative propensity of a time series to regress 
to the mean or to cluster in a direction (Parmar and Bhardwaj, 
2013). It is used to measure three types of trends time series 
(persistence, mean reversion and randomness). According to 
Peters (1991), a time series with a high Hurst exponent denotes 
less noise and more persistence with a more distinct trend relative 
to a time series with a lower value. Time series with high Hurst 
exponents are also less risky (Peters, 1991). A Hurst exponent that 
falls within 0.5-1 depicts a time series with a positive long-term 
autocorrelation, therefore there is a high probability that a high 
value in the series will be followed by another high value and the 
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values also tend to be high for longer into the future and vice versa. 
A Hurst exponent between 0 and 0.5 depicts a time series with 
long-term switching or reversion to the mean therefore a high value 
will probably be followed by a low value, and this tendency will 
persist for a long time into the future. A Hurst exponent equal to 
0.5 may indicate an uncorrelated time series. It may also indicate 
that autocorrelations at small lags may be negative or positive, 
but the absolute values of the autocorrelations decay quickly to 
zero (Onali and Goddard, 2011).

Another non-linear model that evaluates the probability of 
switching is the Markov Switching Model (MSM) which assumes 
that the underlying process that leads to the nonlinear dynamics in 
a given series is latent (Chan et al., 2017). The MSM is based on 
the seminal work of Hamilton (1989) and allows periodic shifts 
in the parameters that describe the dynamics and volatility of a 
system. Conceptually, this model is appealing because, with time, 
the variable of interest, for example the time series of a market 
index, is deemed to possess a certain probability of abruptly 
switching among a number of states or regimes (for example, 
bull and bear market).

In this study, we apply the MSM to provide evidence on the 
assertion of Peters (1989) on the ability of the Hurst exponent to 
describe the persistence or mean reverting nature of financial time 
series. The similarities between the rescaled range analysis and the 
MSM are that they are both non-linear models and they attempt 
to estimate the probability of a given series switching from one 
state to another. The MSM provides actual estimated switching 
probabilities to confirm the relative propensity of a time series 
to regress to the mean or to cluster in a direction. Given these 
similarity, it should be possible to synthesize the two methods 
under the following hypothesis:
H1: A time series with a higher H will exhibit a probability of 

remaining in the same regime as the preceding regime under 
the MSM.

H2: A time series with a lower H will exhibit a higher probability 
of switching regimes under the MSM.

H3: A time series with a lower H and a high probability of switching 
is more volatile than a time series with a higher H and a 
higher probability of remaining in the same regime as the 
preceding regime.

2. LITERATURE REVIEW

The frequency at which financial crises occur in recent decades 
have ignited a debate among proponents of the EMH and the FMH. 
On one hand, proponents of the EMH argue that financial crises 
are highly improbable, they are random events and consequently, 
do not provide any explanation for the occurrence of these crises. 
Critics of the EMH on the other hand argue that financial crises 
occur more frequently than suggested by the EMH.

The EMH is based on the assumption that (1) investors are 
homogeneous and have a one-period investment horizon with 
constant expected returns (Vasicek and McQuown, 1972), (2) 
investors are rational, and (3) there is no friction in financial 
markets. The FMH however argues that there are different 

investors with differing investment horizons, which range from 
the very short-term, such as day-traders, to the very long-term. 
Secondly, the FMH posits that investors interpret information 
differently and therefore take opposing sides of trades that occur 
in financial markets. The different interpretation of information and 
subsequent trading activities based on the differing interpretation 
of information is responsible for the liquidity and smooth 
functioning of financial markets. Finally, the FMH argues that 
the occurrence of financial crises is as a result of the dominance 
of one investment horizon which is due to investors interpreting 
information in the same manner. During such periods, investors in 
all the different investment horizons act in the same manner. For 
example, during political crises or a panic in financial markets, 
both long and short-term investors rush dispose of their assets to 
hold safer securities. This create the situation where even long-
term investors switch to a short-term horizon. The market then 
becomes dominated by the short-term horizon thereby creating 
liquidity problems as there are fewer investors willing to take the 
opposite side of a trade. This liquidity dry-ups are responsible for 
the occurrence of financial crises.

The argument of the FMH on liquidity offers an interesting 
description of stability in financial markets as well as the market 
trends anomaly in EMH (Li et al., 2017). Kristoufek (2013) 
provides empirical evidence on the dominance of one investment 
horizon and subsequent liquidity dry-up during financial crises. 
The study applied the continuous wavelet transform analysis to 
obtain wavelet power spectra which provides the information 
about the distribution of variance across scales and how it evolves 
in time. Kristoufek (2013) concludes that short-term investment 
horizons dominated financial markets during the most turbulent 
periods during the global financial crisis confirming the assertion 
of the FMH. Dar et al. (2017) following Kristoufek (2013), also 
provide evidence that financial markets around the world display a 
dominance of higher frequencies in the periods of financial crises.

Li et al. (2017) created a laboratory market to study the relationship 
between investors heterogeneity regarding investment horizon, 
liquidity and the stability of the financial market using an agent-
based approach based on the assertions of the FMH. Their 
simulation results showed that the market tend to be more stable 
with increasingly divergent investors who are more likely to 
take up the orders of the other side thereby maintaining a narrow 
trade gap. Their study further concludes that markets with 
highly heterogeneous investors are more efficient, less volatile 
and less prone to crash. On 15 July 2015, the financial stability 
board, an international body tasked with monitoring and making 
recommendations about the global financial system, agreed 
to exempt the asset management industry from regulations on 
systemic risk suggesting that attention rather be focused on market 
liquidity (Walter, 2015).

Another technique used in the FMH is the rescaled range analysis. 
The rescaled range analysis is used to derive the Hurst exponent 
also referred to as the “index of dependence” and quantifies the 
relative propensity of a time series to regress to the mean or to 
cluster in a direction (Parmar and Bhardwaj, 2013). The Hurst 
exponent has been used to describe the fractal nature of financial 
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markets around the world (Ikeda, 2017). A Hurst exponent between 
0 and 0.5 depicts a time series with long-term switching or 
reversion to the mean thus a high value will probably be followed 
by a low value, and this tendency will persist for a long time into 
the future (Onali and Goddard, 2011).

The Hurst exponent technique has been used to detect potential 
turning points in the stock markets. On the Dow Jones Industrial 
Index, Grech and Mazur (2004) investigated the crashes of 1929 
and 1987 and concluded that the Hurst exponent technique can 
provide critical signals on impending extreme events. Czarnecki 
et al. (2008) and Grech and Pamuła (2008) studied the critical 
events of the main stock index of Poland (WIG20) and also 
concluded that the local Hurst exponent is an important technique 
for detecting impending crashes. Morales et al. (2012) extended 
the use of time-dependent Hurst exponent on a portfolio of stocks 
in the United States and concluded that the Hurst exponent values 
can be associated with different phases of the market.

In financial markets, the state transition processes in the form bull–
bear market swings, have significant practical relevance (Wang, 
2008). One model that can be used to determine the probability 
of a regime switch is the MSM. In econometrics, the MSM of 
Hamilton (1989) is one of the most important models mainly 
because it can allow for changes both in variance and mean, it can 
allow for multiple breaks and can detect outliers in time series.

If applied properly, the MSM, is able to explain and illustrate 
economic fluctuations around boom–recession and even other 
complex multi-phase cycles (Wang, 2008). The MSM has been 
used to analyse bull and bear markets in various financial markets 
(Bejaoui and Karaa, 2016; Chi et al., 2016; Yu et al., 2017; Frøystad 
and Johansen, 2017). Bejaoui and Karaa (2016) for example sought 
to provide a better understanding of the bull and bear markets with 
an extension of the multi-state MSM of Maheu and McCurdy 
(2000). The study applied a four-state-regime model defined 
as boom, bull, crash and bear states to define the bear and bull 
markets on trend-based schemes and established an indicator of 
market state which can detect inflexion points in a market cycle.

3. DATA AND METHODOLOGY

3.1. Data
The study obtained daily and monthly data on four indices on 
the Johannesburg stock exchange (JSE) namely, the FTSE/JSE 
All Share, FTSE/JSE Top 40, FTSE/JSE Mid Cap and FTSE/JSE 
small cap index from the database of McGregor BFA from 1 June 
1995 to 31 August 2017. On the international markets, daily and 
monthly data are obtained from Yahoo Finance for the Shanghai 
Stock Exchange (SSE Composite) of China, the São Paulo Stock, 
Mercantile & Futures Exchange’s IBOVESPA (Brazil), IPC 
Mexico and the Dow Jones Industrial Average from 1 June 1995 
to 31 August 2017.

3.2. The Rescaled Range Analysis (The Hurst 
Exponent)
The rescaled range analysis can be applied to estimate the fractal 
nature of a time series. In developing the FMH, Peters (1994) 

applied a modified rescaled range (R/S) procedure, pioneered by 
Hurst (1951). Peters (1994) and Howe et al. (1997) review the 
steps for computing the R/S analysis. First, the selected index 
series are converted into logarithmic returns, St, at time period t 
of the JSE index series.

In line with Peters (1994), we divide the time period into A 
contiguous sub-periods with length n, such that A×n = N, where 
N is the length of the series Nt. We label each sub-period Ia where 
a = 1,2,3,…A and label each element in Ia is as Nk,a where k = 
1,2,3,…,n. The average value ea for each Ia of length n is given as.

n

a k,a
k=1

1e = × N
n

 
 
  ∑  (1)

The range aIR
 is expressed as the maximum minus the minimum 

value Xk,a, in every sub-period Ia:

( ) ( )aI k,a k,aR =max X min X ,where1 k n,1 a A− ≤ ≤ ≤ ≤  (2)

Where,

( )
k

k,a i,a a
i=1

X = N e ,k=1,2,3, n,− …∑  (3)

Is the series of accumulated deviations from the mean for each 
sub-period. To normalise the range, each range 

aIR  is divided 
by the sample standard deviation 

aIS  corresponding to it. The 
standard deviation is expressed as:

( )a

0.5n
2

I k,a a
k=1

1S = N e
n

  × −  
   

∑  (4)

The mean R/S values for length n is expressed as:

( )
a a

A

I In
a=1

1R/S = × (R /S )
A

 
 
  ∑  (5)

An OLS regression with log(n) as the independent variable 
and log(R/S) as the dependent variable and log(n) b. The slope 
coefficient of the regression represents the Hurst exponent, H. An 
H of 0.07 means there is a 70% probability that if the preceding 
move in a series was negative, then the next move will also be 
negative.

The autocorrelation within the time series is computed as:

CN = 2(2h−1)−1 (6)

The CN represents the percentage of variations in a time series 
which can be explained by historical information (Peters, 1994). 
A CN = 0 denotes randomness in a time series and suggests a 
weak-form efficient market, where historical information cannot 
be used to outperform the market.
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3.3. Fractal Dimension (FD)
The FD is a statistical measure that provides an indication of how 
a fractal appears to completely fill space, when one zooms in to 
finer scales (Rangarajan and Sant, 2004).

FD = 2-H (7)

The FD can also be estimated from the Haussdorf dimension (DH), 
a metric space given as

( )
H 0

ln N
D lim

ln ε→

 ε =
ε

 (8)

Where N(ε) is the number of open balls of a radius ε required to cover 
the whole set. An open ball with radius ε and centre P in a metric 
space with metric d is given as a set of all points x with d(P, x) <ε.

If 1.5<FD<2, the time series is more jagged, and reverts to the 
mean more often than a random walk would. If 1<FD<1.5, the 
time series is exhibits long memory process and persistent.

3.4. Markov Regime Switching Model
One assumption under the lognormal regime-switching model, is that 
the process of stock return falls within one of K states or regimes. If 
ρt represents the applicable regime in the interval [t, t+1) (in days), 
ρt = 1, 2,…, K, and St is the total index of return at time t; then

t+1
t t tlog | N( , )ρ ρρ ∼ µ σ  (9)

The transition matrix P represents the probabilities of shifting 
regimes, that is,

pij = Pr⁡[ρt+1=j│ρt=i] i=1,2,j=1,2 (10)

Therefore, for the conditionally independent two-regime lognormal 
model, we estimate six parameters, Θ = {μ1, μ2, σ1, σ2, p1,2, p2,1}

3.5. Maximum Likelihood Estimation
If t+1

t
t

S
Y =log

S
 
 
 

 is the log return in month t+1, then the likelihood 

for observations y = (y1, y2,… yn) is given as

L(Θ)=f(y1│Θ)f(y2│Θ,y1)f(y3│Θ, y1, y2)…f(yn│Θ, y1,…yn−1) (11)

Where f is the probability distribution function (pdf) for y. 
Therefore, the contribution to the log-likelihood of the tth 
observation is given as

logf(yt│yt−1),yt−2,…,y1,Θ) (12)

Following Hamilton and Susmel (1994), we estimate this 
recursively, by computing for each t:

f(ρt, ρt−1), yt|yt−1,…,y1,Θ)= p ( ρ t − 1 , │ y t − 1 , … , y 1 , Θ ) × 
 p(ρt│ρt−1,Θ)f(yt|ρt, Θ) (13)

The equation on the right-hand side, p(ρt|ρt−1,Θ) is the probability 

of transition between the regimes t t
t t

t

y
f(y | , ) ρ

ρ

 −µ
ρ Θ = φ  σ 

Where ϕ represents the standard normal probability density 
function, and the probability function p(ρt−1,|yt−1,…,y1,Θ) is derived 
from the prior recursion and is equal to

(f(ρt−1, ρt−2=1,yt−1)|yt−2, yt−3,…,y1,Θ)+f(ρt−1), ρt−2=2,yt−1|yt-−2, yt−3,…
,y1,Θ))÷f(yt−1|yt−2,yt−3…,y1,Θ) (14)

We then estimate f(yt−1|yt−2,yt−3…,y1,Θ) as the total of the four 
possible values of Equation (1): For ρt = 1, 2 and ρt−1 = 1, 2.

To begin the recursion, we require a value (given Θ) for ρ (ρ0), 
which can be found from the regime-switching Markov chain’s 
invariant distribution. The invariant distribution, π = (π1, π2) 
represents the unconditional probability distribution of the process. 
Every transition returns the same distribution under the invariant 
distribution p; that is

πP=π, giving π1 p1, 1+π2 p2,1 = π1 and π1 p1,2+π2 p2,2 = π2. Thus, p1,1 
+p1,2 = 1.0, and so, π1 = p2,1/(p1,2+p2,1), and π2 = 1-π1 = p1,2/(p1,2+p2,1).

We can then proceed with the recursion by estimating for a given 
parameter set :

( ) ( )1 1
1 1

1

1 2
2 1

2

1 1

1

1

1

1

y , f =2, y |

y , f(y | )

=f( =1, y | )+f( =2, y

f 1, y  

| )

E
 −µ
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ρ
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= Θ = Θ

ρ

Θ

ρ

Θ

ΘΘ

 (15)

We then estimate for use in the following recursion, the two 
values of

( ) ( )
( )
1 1

1 1
1

f ,y |
p |y ,  =  

f y |
ρ Θ

ρ Θ
Θ

 (16)

Standard search methods can be applied to maximize the likelihood 
function over the six parameters.

3.6. Persistence index (PI)
To rank the level of persistence, we device a simple ordinal 
persistence measure, a PI given as:

PI = p1,1+p2,2, (17)

The higher the PI the higher the probability of an index remaining 
in a bull (bear) market given that the preceding regime was a bull 
(bear) market.

4. EMPIRICAL RESULTS

If the time series of the selected indices are normally distributed, 
then properties of normal distribution can be applied for the data 
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analysis process. We therefore test for normality to determine 
whether the selected indices follow a normal distribution. Table 1a 
shows the descriptive statistics for selected indices on the JSE 
in South Africa. The Small Cap index had the lowest standard 
deviation among the selected indices on the JSE. This implies that 
the small cap index is less volatile than the all share, top 40, and 
mid cap indices in South Africa. Skewness is −1.2116, −0.9870, 
−0.9707, and −1.0713 for the all share, top 40, mid cap and small 
cap index respectively. Kurtosis is 9.7889, 7.9764, 11.6414 and 
8.2110 for the all share, top 40, mid cap and small cap index 
respectively. Table 1b shows the descriptive statistics for the 
selected international indices. The standard deviation of the Dow 
Jones is lower than that of the SSE, IBOVESPA and IPC implying 
that the Dow Jones is less volatile than the selected international 
indices. Skewness is −0.1761, −1.0309, −1.0284 and −0.7847 
for the SSE composite, IBOVESPA, IPC Mexico and Dow Jones 
index respectively. Kurtosis is 4.4027, 7.4685, 7.4716 and 4.7090 
for the SSE composite, IBOVESPA, IPC Mexico and Dow Jones 
index respectively.

For a given time series to be deemed to follow a normal 
distribution, skewness and kurtosis should be equal to 0 and 3 
respectively. We can therefore conclude that the time series of the 
selected indices do not follow normal distribution.

Our conclusion can be also confirmed again through the Lilliefors, 
and Anderson Darling tests. There are two hypotheses, H0 and H1, 
where H0 states that the time series are normally distributed and H1 
states that the time series are not normally distributed. In Table 2a 
and b presents the results of our test of normal distribution.

Given that the concomitant probabilities for all the indices are 
lower than 5% for the Lilliefors and Anderson-Darling tests, we 
reject the H0 at the 5% level for the selected indices on the JSE 
and the selected international indices.

Table 3a and b shows the results of our rescaled-range analyses. 
The all share, top 40 and mid cap indices have H of 0.4858, 0.4929 
and 0.5096 respectively for the South African indices and the H 
of the SSE, IBOVESPA and IPC are 0.5281, 0.5018 and 0.4911 
respectively.

The small cap index on the other hand has an H of 0.66 while the 
Dow Jones has an H of 0.62 signifying persistence in the time series 
therefore there is a high probability that a data point in future will 
be like a data point that preceded it. Furthermore, a CN of 0.26 
for the small cap index implies 26% of variations in this index are 
dependent on historical information whereas CN −0.02, −0.01 
and 0.01 for the all share, top 40 and mid cap indices respectively 
imply <3% of variations in the time series are dependent on 
historical information. A CN of 0.19 for the Dow Jones implies that 
19% of variations on the Dow Jones are dependent on historical 
information. CN is <0.04 for the remaining international indices.

The FD of the South African small cap index and the Dow Jones 
(1.3 and 1.4 respectively) are >1 but <1.5 signifying the existence 
of long memory process in the series whereas the remaining 
indices had FD ≥1.5 but <2 signifying jagged time series and mean 
reversion that is more often that a random walk process would.

This study considered a two-regime market in line with Hamilton 
(1989). The results from our MSM from Table 4a and b are all 

Table 1a: Descriptive statistics (South Africa)
Statistics All share Top 40 MID CAP Small CAP
Mean±SD 0.9206±5.3811 0.8909±5.6589 0.0487±0.8900 0.9071±4.8489
Skewness −1.2116 −0.9870 −0.9707 −1.0713
Kurtosis 9.7889 7.9764 11.6414 8.2110
SD: Standard deviation

Table 1b: Descriptive statistics (international)
Statistics SSE composite Ibovespa IPC Mexico DOW Jones
Mean±SD 0.6596±8.2165 1.0713±8.7234 1.1843±6.6304 0.6429±4.2008
Skewness −0.1761 −1.0309 −1.0284 −0.7847
Kurtosis 4.4027 7.4685 7.4716 4.7090
SD: Standard deviation

Table 2a: Normality test (South Africa)
Test All share TOP 40 MID cap Small cap

Value P Value P Value P Value P
Lilliefors 0.0675 0.0052 0.0678 0.0049 0.0707 0.0000 0.0621 0.0149
Anderson-darling 1.4608 0.0009 1.2931 0.0023 61.596 0.0000 1.5146 0.0007

Table 2b: Normality test (international)
Test SSE composite Ibovespa IPC Mexico Dow Jones

Value P Value P Value P Value P
Lilliefors 0.0696 0.0029 0.0738 0.0011 0.0783 0.0004 0.0712 0.0021
Anderson-darling 1.5271 0.0006 1.5631 0.0005 2.1938 0.0000 1.9938 0.0000
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significant except for the SSE composite. This confirms the 
existence of a two-regime market on the selected indices with the 

exception of the Chinese market. For a possible synthesis of the 
FMH and the MSM, the transition probabilities for the selected 
indices should corroborate the results from the rescaled range 
analysis.

An index with H >0.5 depicts persistence therefore it should exhibit 
a relatively higher probability that a high (low) value in the series 
will be followed by another high (low) value and this will persist 
longer into the future. An index with H >0.5 should therefore have 
a high probability of remaining in a bull (bear) market regime 
given that the preceding regime was a bull (bear) market. The 
results from Table 5a shows that the small cap index which had 
the highest H (0.66) also has the highest PI (1.44). Although the 
SSE composite showed the highest PI (1.81), the results from 
the MSM was not significant. Of the significant results for the 
international market, the Dow Jones had the highest PI (1.20) and 
also had the highest H (0.62).

Panel A shows the smoothed regime probabilities and the closing 
price of the selected indices for this study. Smoothed probabilities 
show the estimated probabilities of each regime occurring at each 
point in time.

The findings from our study confirm that a time series with a 
higher H will exhibit a higher probability of remaining in the same 
regime as the preceding regime under the MSM and therefore 
display a relatively high PI. Secondly, a time series with a lower 
H will exhibit a higher probability of switching under the MSM 
and display a lower PI. Finally, a time series with a lower H and 
a high probability of switching is riskier than a time series with a 
higher H and a higher probability of remaining in the same regime 
as the preceding regime. The MSM model therefore corroborates 
the FMH.

In line with the FMH, the small cap index and the Dow Jones 
Industrial, which has the highest H, were also the least risky among 
the selected indices and had the highest PI. Our results from the 
MSM confirms the assertion of Peters (1991) that a time series 
with a high Hurst exponent signifies more persistence with a more 
distinct trend and also less risky.

Table 3a: Rescaled range analysis (South Africa)
Statistics All share Top 40 Mid cap Small cap
Hurst exponent (H) 0.4858 0.4929 0.5096 0.6638
CN −0.0195 −0.0098 0.0134 0.2549
FD 1.5142 1.5142 1.4904 1.3362
FD: Fractal dimension

Table 3b: Rescaled range analysis (international)
Statistics SSE 

composite
Ibovespa IPC 

Mexico
Dow 
Jones

Hurst 
exponent (H)

0.5281 0.5018 0.4911 0.6244

CN 0.0397 0.0025 -0.0123 0.1882
FD 1.4719 1.4982 1.5089 1.3756
FD: Fractal dimension

Table 4a: Markov switching model (South Africa)
Statistics All share Top 40 Mid cap Small cap
Regime 1
Coefficient 1.055753 1.022669 1.149021 1.773104
Standard error 0.303860 0.324145 0.292845 0.375441
P 0.0005 0.0016 0.0000 0.0000
Regime 2
Coefficient −34.88516 −33.90635 −34.51565 −7.221562
Standard error 4.958695 5.388579 4.798005 1.624854
P 0.0000 0.0000 0.0000 0.0000

Table 4b: Markov switching model (international)
Statistics SSE 

composite
Ibovespa IPC 

Mexico
Dow 
Jones

Regime 1
Coefficient −0.780542 1.585074 1.492735 1.152305
Standard error 0.741134 0.493456 0.367206 0.276438
P 0.2923 0.0013 0.0000 0.0000
Regime 2
Coefficient 6.954535 −31.00649 −28.73190 −9.574930
Standard error 1.823390 5.766273 4.801327 2.226720
P 0.0001 0.0000 0.0000 0.0000

Table 5a: Transition probability (South Africa)
Regime All share Top 40 Mid cap Small cap
Constant transition probability

Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2
Regime 1 0.996225 0.003775 0.996215 0.003785 0.996223 0.003777 0.948469 0.051531
Regime 2 1.000000 6.32E-09 0.999880 0.000120 1.000000 1.75E-08 0.486941 0.513059
PI 0.996225006 0.996335 0.996223018 1.461528

Table 5b: Transition probability (international)
Regime SSE composite Ibovespa IPC Mexico Dow Jones
Constant transition probability

Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2
Regime 1 0.965483 0.034517 0.983985 0.016015 0.989725 0.010275 0.962412 0.037588
Regime 2 0.152142 0.847858 1.000000 5.66E-09 0.999915 8.49E-05 0.755440 0.244560

PI
1.813341 0.983985006 0.9898099 1.206972
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5. CONCLUSION

Regardless of the numerous criticisms, the EMH remains the 
dominant hypothesis that explain financial markets because 
among other factors, it has a plethora of models that are built on 
its assumptions and provide corroborating empirical evidence to 
support the hypothesis. For the FMH to be considered a credible 
alternative to the EMH, it must be supported by new and existing 
models that provide empirical evidence to support the assertions 
of the hypothesis. In this study, we provide a synthesis of the FHM 
and the MSM to conclude that the small cap index in South Africa 
is less risky and shows more persistence than the all share, top 40 
and mid cap indices. On the selected international markets, the 
Dow Jones is less risky and shows more persistence that the SSE 
of China, IBOVESPA of Brazil and IPC of Mexico. The MSM 
therefore corroborates FMH regarding the behavior of financial 
time series.
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