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ABSTRACT

Volatility and correlation are important metrics of risk evaluation for financial markets worldwide. The latter have shown that these tools are varying 
over time, thus, they require an appropriate estimation models to adequately capture their dynamics. Multivariate generalized autoregressive conditional 
heteroskedasticity (GARCH) models were developed for this purpose and have known a great success. The purpose of this article is to examine the 
performance of multivariate GARCH models to estimate variance covariance matrices in application to 10 years of daily stock prices in Moroccan 
stock markets. The estimation is done through the most widely used multivariate GARCH models, dynamic conditional correlation (DCC) and Baba, 
Engle, Kraft and Kroner (BEKK) models. A comparison of estimated results is done using multiple statistical tests and with application to volatility 
forecast and value at risk (VaR) calculation. The results show that BEKK model performs better than DCC in modeling variance covariance matrices 
and that both models failed to adequately estimate VaR.

Keywords: Volatility, Correlation, Multivariate Generalized Autoregressive Conditional Heteroskedasticity, Diagonal Baba; Engle; 
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1. INTRODUCTION
Asset pricing, risk assessment, and portfolio management are 
undoubtedly the most important activities in financial institutions. 
Institutions are concerned by measuring and forecasting changes 
in their portfolio values according to different market conditions. 
The tool that practitioners and researchers use to quantify these 
changes is volatility. Volatility is defined as variation in an asset 
prices over a period of time. Correlation is also an important tool 
that measures co-movements between multiple assets.

Financial markets worldwide have shown that volatility is varying 
over time. A number of researchers studied this phenomenon, for 
example: Officer (1973) showed that volatility changes are related 
macroeconomic variables, Black (1976) and Christie (1982) 
argued that financial leverage partly explains it, Merton (1980) 
among others1 related macroenomic volatility to interest rates.

1 Pindyck (1984), Bollerslev et al. (1988).

Volatility is not observable and then should be estimated. In 1982, 
Engle introduced the autoregressive conditional heteroskedasticity 
(ARCH) model. The AR part is due to the fact that these models 
are autoregressive models in squared returns. The conditional 
part comes from the fact that next period volatility is conditional 
on information set until this period. Heteroscedasticity means 
non constant volatility. As there were no other methods available 
before, Engle’s ARCH model contributed significantly to financial 
econometrics by allowing conditional variances to change over 
time. The primary descriptive tool was the rolling standard 
deviation.

In 1986, Bollerslev developed a generalization of the ARCH 
model. He built a more general concept of Engle’s ARCH model by 
including q lags of the conditional variance (denoted generalized 
ARCH [GARCH] [P,Q]). Later on, many extensions were added 
to the ARCH family models, Nelson (1991) and his exponential 
GARCH (EGARCH) model (P,O,Q) which models the natural 
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logarithm of the variance instead of modeling the variance directly, 
Runkle (1993) and his GJR-GARCH model which is an extension 
of the standard GARCH(P,Q), it includes asymmetric terms in 
the conditional variance of equities. Other models also exist in 
literature, we cite TARCH model (Rabemananjara and Zakoian 
[1993]) and APARCH of Ding and Granger (1996).

Although Univariate GARCH family models were a great 
invention in the financial econometrics, they are unable to estimate 
correlations when multiple assets are involved. For example, the 
main problem in portfolio selection, which is defining the optimal 
weights of the underlying asset returns, depends on correlations 
estimation. Another example is pricing of derivatives contracts 
based on multiple underlying assets that requires correlations 
estimation. Actually, it is commonly accepted that assets 
volatilities move together, consequently, it is important to capture 
adequately the interdependence’s between different assets in a 
portfolio. Multivariate GARCH models were developed to respond 
to these needs. However, these models face many challenges to 
adequately capture variances and covariance’s dynamics.

From one hand, the number of parameters of a model may explode 
when the number of assets increases, this causes complexities 
problems in computation and interpretation of parameters, also, 
reducing the number of parameters should not impact the quality of 
the model in capturing variances and covariance’s dynamics. From 
the other hand, and as stated in Merton (1972), Roll (1977), and 
Jobson and Korkie (1989), among others, multivariate GARCH 
models should insure the positive-definiteness of the resulted 
variance covariance’s matrix. This requirement may appear to 
be satisfied, as by definition, the variance of random variables is 
positive. But, there are many possibilities were covariance matrix 
can be non-positive definite, for example in case assets exhibit non 
constant volatility or in case of the use of insufficient observation in 
estimation. For the positive definiteness can be achieved in general 
in two ways. The first one is constructing a model in a way that 
the resulted matrix is definite positive, the second one is imposing 
condition in a way that the computed variance covariance matrix is 
positive definite, the second alternative is hard to apply in practice.

Over the past two decades, a considerable literature has been 
developed around multivariate GARCH models. The first one was 
introduced by Bollerslev et al. (1988), the VEC model. It had the 
advantage that its coefficients can be directly interpreted. But this 
model is very general and difficult to implement in practice, it does 
not guarantee the positive definiteness of the variance covariance’s 
matrix, also it suffers from high dimensionality of parameters to 
estimate. Bollerslev et al. (1988) proposed diagonal VEC model 
which is a simplified version of the VEC model. It reduced the 
number of parameters to estimate by assuming that model coefficients 
are diagonal matrices, it guarantees also the positive definiteness 
of the variance covariance’s matrix, but because of element of the 
covariance matrix depends on past observations of itself, it does not 
capture interactions between different variances and covariance’s.

Engle and Kroner (1995) proposed the Baba, Engle, Kraft and 
Kroner (BEKK)2 model which can be viewed as a restricted version 

2  BEKK named after model authors: Baba, Engle, Kraft, and Kroner.

of the VEC model. It has the advantage that variance-covariance 
matrix is definite positive by construction, but the interpretation of 
model parameters is not easy, also, like the VEC model, it suffers 
from high dimensionality problem. Many other simplifications 
of the full BEKK model were added to the literature, we cite the 
Diagonal and Scalar BEKK models. These two models reduced the 
number of parameters to estimate in comparison to the VEC model.

To overcome the problem of high number of parameters to estimate 
in the previously cited models, Engle et al. (1990) introduced 
another approach of MGARCH models. These models are called 
factor GARCH models. It is assumed that the observations 
are generated by underlying factors that are conditionally 
heteroskedastic and possess a GARCH-type structure. The number 
of factors to be modeled can be much smaller than the number of 
assets which make these models feasible even for high number 
of assets. Alexander (2001) developed the orthogonal-GARCH 
model. This model is computationally simple. It is based on only 
the first few components of the entire risk factors. This model 
reduced the number of parameters to estimate but like the BEKK 
model, parameters are difficult to interpret.

Another approach in MGARCH is modeling the conditional 
variances and correlations instead of modeling the conditional 
covariance matrix directly. The conditional covariance matrix is 
decomposed into conditional standard deviations and a correlation 
matrix. Bollerslev (1990) introduced the first category of these 
models, namely the constant conditional correlation (CCC) model. 
Conditional correlation matrix is assumed to be time invariant in 
this model which makes it computationally attractive. It insures 
the positive definiteness of the variance-covariance matrix and 
reduces the number of parameters to estimate. But the assumption 
that conditional correlation matrix is constant is unrealistic in 
reality.

Engle (2002) suggested a generalization of the CCC model by 
letting the conditional correlation matrix to be time varying. 
This model is called dynamic conditional correlation model 
(DCC). There has been a growing interest to this model since 
its introduction and it has a central role in dynamic correlation 
modeling. Firstly, the number of parameters to estimate is smaller 
comparing to BEKK model, also, it decreases the complexity of 
the computation in case of a high number of assets, because the 
estimation is done into two steps. Also, one main advantage of this 
model is that it guarantees the positive definiteness of variance 
covariance matrix at each point in time.

The purpose of this article is to empirically study, based on the 
theory of multivariate GARCH models, co movements between 
assets in Moroccan stock markets. We selected stocks that have 
the longest and continuous available historical prices. We choose 
also two of the most widely used multivariate GARCH models, 
diagonal BEKK and DCC. Models order selection is done through 
the appropriate statistical tests. Once the models are estimated, 
we study the quality of the estimation and we use the obtained 
results in calculating the value at risk (VaR) and volatility forecast. 
This will allow us to compare between the estimated models in 
capturing variance covariance dynamics.
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This paper is organized as follows; next section presents a 
theoretical framework of Univariate GARCH, diagonal BEKK 
and DCC models, the third section presents data used and the 
empirical results before concluding in the last section.

2. THEORETICAL FRAMEWORK

2.1. Univariate GARCH Models
Define σt as the standard deviation, St the price and rt the excess 
return of an asset on day t. (ϵ_t) is an i.i.d sequence. The excess 
return on t is defined as:

t 

t-1

S
r=ln

S
 
  

 (1)

Engle (1982) introduced the ARCH(p) model. The variance is 
estimated based on the past p observations, less weights is given 
to older observations. The model equation is established as below:

p
2 2
t i t i

i=1

=  r  −σ ω + α∑  (2)

The simplest ARCH model is ARCH(1). Equation becomes:

2 2
t 1 t 1= + r −σ ω α  (3)

To insure that σ is positive, ω and α should both be >0. Also, for 
stationary purposes, α should be <1. In this model, large values of 
rt−1 imply high values of σt. Large values of rt−1 mean high volatility 
at t−1. Consequently, in an ARCH (1) model, high volatility cluster 
may cause more volatility clustering. Bollesrev (1986) suggested 
a generalization of the ARCH(P) model that features this behavior, 
the GARCH(P,Q) model, the current level of volatility depends not 
only of P lags of excess returns, but also from Q lags of variances. 
The equation of GARCH(P,Q) is:

p q
2 2 2
t i t i i t i

i=1 i=1

= + r +− −σ ω α β σ∑ ∑    (4)

α1, α2,…, αp, β1…, βq are positive, ω > 0 and: 
max(p,q)

i i
i 1

<1
=

α β∑  for 
stationary.

GARCH model lags p and q can be selected using the 
Akaike information criterion (AIC) and Bayesian information 
criterion (BIC). AIC and BIC allow us to choose GARCH model 
that best fit our data. AIC and BIC formulas will be detailed later 
in this article.

GARCH coefficients can be estimated using the maximum 
likelihood. Another way to check the goodness of fit of a GARCH 
model is checking the autocorrelation of standardized residuals 
using the autocorrelation function (ACF). If the ACF shows a 
little autocorrelation of the standardized residuals, then the model 
is well fitted. This means that most of the autocorrelation was 
explained by the model.

2.2. Multivariate GARCH
When we move from a scalar r to a d dimensional one, the variance 
σ become a d × d covariance matrix process ∑. The multivariate 
GARCH model defines rt as:

r =H
t t

1

2
t

η
 (5)

Where, rt is a N × 1 vector of excess returns of N assets with 
E(rt) = 0 and ηt is an i.i.d vector error with '

t tE=[ ]η η . Ht is the 
conditional covariance matrix of rt (N × N matrix).

The objective of multivariate GARCH process is to estimate Ht. 
Many approaches have been developed to model it; we will use 
two of them in the present article. The first approach estimates the 
covariance matrix directly, it includes VEC and BEKK models. 
The second one models the conditional variances and correlations 
instead of directly modeling Ht, this class of models includes CCC 
and DCC.

Bollerslev et al. (1988) introduced the VEC (P,Q) model, it is a 
generalization of the Univariate GARCH model, its equation is 
defined as below:

( ) ( ) ( )
p q

'
t j t j t j j t j

j=1 j=1

vech H =c+ A vech   B  vech H  − − −η η +∑ ∑   (6)

Where, vech(.) (Vech is an abbreviation for vector-half) is an 
operator that creates a column vector whose elements are the 
stacked columns of the lower triangular elements of matrix, c is 
an N(N + 1)/2 × 1 vector and Aj and Bj are N(N + 1)/2 × N(N + 
1)/2 matrices of parameters. But the VEC model presents many 
disadvantages, for example it does not guaranty the positive 
definiteness of Ht, also, the number of parameters to estimate 
is very large, it is equal to: (p + q)(N(N + 1)/2)2+(N + 1)/2. 
Bollerslev et al. (1988) presented the diagonal VEC model, it 
is a simplified version of the initial VEC model that guaranty 
the positive definiteness of Ht with (p + q + 1)N(N + 1)/2 
parameters. It assumes that Aj and Bj are diagonal matrices. 
But this version of the VEC model is still computationally 
demanding.

Engle and Kroner (1995) introduced a restricted version of the 
VEC model, it is called BEKK model. This model equation is 
written as below:

p qK K
' ' ' '

t kj t j t j kj kj t j kj
j=1 k=1 j 1 k=1

H =CC A A  B H B− −
=

−+ η η +∑∑ ∑∑    (7)

Where, Akj, Bkj are N × N parameter matrices and C is N × N 
lower triangular matrix. This model economizes the number of 
parameters to estimate and allow cross dynamics of conditional 
covariance’s. If we set B = AD, where D is a diagonal matrix, 
equation 7 can be interpreted as modeling conditional variances 
and covariance’s. The diagonal BEKK model is a simplified 
version of BEKK where matrices A and B are considered as 
diagonal. Equation B = AD is satisfied in this model. BEKK model 
insure the positive definiteness of Ht.

The second approach that we are interested at in the present article 
are the ones that models conditional covariance’s matrix indirectly, 
it has the form bellow:

Ht=Dt Γt Dt (8)
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Where, (1/2) (1/2)
t 1 ND =diag (h t ,...,h t )  is diagonal matrix of 

conditional variances and Γt is the conditional correlation matrix 
of rt, Γt = (ρij,t) is positive, definite and symmetric with ρii = 1 ∀ i, 
each hjt is modeled by an Univariate GARCH process.

Bollerslev (1990) proposed the CCC model where Γt is assumed 
to be constant. This model simplifies the estimation. However, 
assuming that Γt is constant is not realistic in practice.

Engle (2002) introduced the DCC model by letting Γt to be time 
varying. It is defined as:

1 1
2 2

t t t t = diag Q  Q  diag Q
− −   

Γ          
 (9)

Where, ( )t t 1 t 1 t 1Q = 1- -  Q+  u  u +  Q− − −α β α β  is N × N symmetric 
positive definite matrix. ut is the standardized residuals matrix. Q  
is the N × N unconditional variance matrix of ut and α and β are 
non-negative scalar parameters with α and β < 1.

3. EMPIRICAL RESULTS

3.1. Data Description
Data we employed in this study are daily observations on stock 
returns. We used daily data to ensure large number of observations 
to adequately fit models. We choose stocks that have the longest 
and continuous available historical prices in Casablanca Stock 
exchange market. Data series start from date 22/02/2004 to 
20/10/2015 providing a total of 2749 observations for each 
series. Six equities have been selected, they are labeled: IAM, 
CTM, LESU, MNG, SOND and HOL. Our data were retrieved 
from Thomson Reuters databases and all calculations were done 
using Matlab software. Table 1 presents descriptive statistics of 
our series.

Figure 1 plots daily returns. It can be seen from this figure that our 
series volatilities don’t keep constant over time, also high returns 
tend to be followed by high returns and low returns tend to be 
close with low returns, this is the volatility clustering property.

Kurtosis3 calculated for our series presented in Table 1 are >3, 
indicating that they have fat tailed distributions. The skewness4 are 
different from zero meaning that they are asymmetric distributions. 
The computed statistics of Jarque-Berra normality test5 are all 
greater that the critical value (in our case it is = 5.9716) which 
rejects the hypothesis of normality of our daily returns.

3 Kurtosis gives a measure of the thickness in the tails of a probability density 
function. For a normal distribution the kurtosis is 3. A fat-tailed or thick-
tailed distribution has a value for kurtosis that exceeds 3. This is called 
leptokurtosis.

4 Skewness gives a measure of how symmetric the observations are about the 
mean. For a normal distribution the skewness is 0. A distribution skewed 
to the right has positive skewness and a distribution skewed to the left has 
negative skewness.

5 Jarque-Berra is a test of normality, we test the null hypothesis: H0: Normal 
distribution, skewness is zero and excess kurtosis is zero; against the 
alternative hypothesis: H1: Non-normal distribution.

3.2. Model Order Selection
For the order selection of our models, we use the AIC and the 
BIC6 values calculated in Table 2. Model with the lowest values 
is preferred, the formulas of these two criteria are:

AIC = −2 × LLF + 2 × m

BIC = −2 × LLF + 2 × ln (n) (10)

Where, LLF is the log likelihood function, m is the number 
of parameters estimated in the model and n is the number of 
observations.

As indicated in Table 2, models BEKK(2,1) and DCC(1,1) are the 
best that suite for our data. The stars (*) in the tables indicates the 
lowest values, both criteria’s AIC and BIC confirmed our models 
orders choice.

3.3. Multivariate GARCH Models Estimation and 
Diagnostic
MGARCH models estimation is done using the maximum 
likelihood method. The estimated parameters A, B and C7 of 
diagonal BEKK model as illustrated in equation 7 are presented 
in Appendix A.

We estimate also DCC (1,1) model parameters. But we perform 
first test of dynamic correlation8 to confirm that DCC model 
is preferred than CCC. P-value obtained from this test is 
4.2770×10−11 <0.05, which rejects the null hypothesis that the 
correlation is constant. Therefore, DCC is more suitable than 
CCC for our series. Appendix B presents DCC (1,1) estimated 
parameters for our data sample. We note that all coefficients 
estimated for DCC (1,1) are statistically significant, but not all 
for the BEKK (2,1). Matrices A and B and diagonal coefficients 
of matrix C are all statistically significant. Other non-diagonal 
element of matrix C are not statistically significant. Estimated 
correlations from the two models are plotted in Appendix C.

As mentioned above, models are estimated using maximum 
likelihood techniques which assume that residuals have normal 
distributions. Thus, to check the fitted model robustness, we 
check if residuals are white noise process. Figures in Appendix D 
plots the standardized residuals from the estimated models, they 

are calculated using the formula: X =H
t t

1

2 . The first impression 

we get from standardized residuals figures is that they are white 
noise.

We perform also Ljung-Box Q-test for residuals autocorrelation 
to examine if the standard residuals are random and independent 
over time. Table 3 presents results of the Ljung-Box Q-test for 
residuals autocorrelation. Test statistics results reject the null 

6 Burnham, K.P., Anderson, D.R. (2004), Multimodel inference: 
Understanding AIC and BIC in model selection. Sociological Methods and 
Research, 33, 261-304.

7 M = CC.
8 Engle and Sheppard, 2001.



Belasri and Ellaia: Estimation of Volatility and Correlation with Multivariate GARCH Models: An Application to Moroccan Stock Markets

International Journal of Economics and Financial Issues | Vol 7 • Issue 2 • 2017388

hypothesis that there is no autocorrelation. They are all greater 
than the critical. This rejects the conclusion we get from analyzing 
standardized residuals plots.

Another examination of the adequacy of our model estimation in 
capturing volatility and correlations dynamics is comparing the 
estimated volatility to the true volatility. While volatility is not 
observable, we need to choose an approximation to it. The most 
common proxies of squared volatility are the squared returns and 
realized volatility. Because realized volatility is based on intraday 
data that are not available for our assets, we will use in our 
comparison squared returns as a proxy for volatility. We compute 
volatilities for an equally weighted portfolio of ours assets, they 
are plotted in Figure 2. We notice that the estimated volatilities 
follow squared returns tendency.

4. MODELS COMPARISON

In addition of diagnostics done in the previous paragraph, we 
are going to use mean absolute error (MAE) of estimated and 

Figure 1: Daily returns series plot

Table 1: Descriptive statistics of daily returns
Statistic IAM LESU CTM MNG SOND HOL
Mean (×10−17) −1214.7 35.12 12.48 16.51 −6.18 −29.56
Standard error 0.0298 0.0411 0.0503 0.0524 0.049 0.0428
Median 0.0088 −0.0091 0.0165 0.0327 −0.01 0.0345
Mode 0.0088 −0.0091 0.0165 0.0327 −0.01 0.0345
Standard deviation 1.564 2.1542 2.6378 2.7455 2.5669 2.2451
Sample variance 2.4462 4.6405 6.958 7.5377 6.5888 5.0403
Kurtosis 4.7566 3.4628 7.5508 5.7903 3.6587 4.8238
Skewness 0.3226 0.3325 −0.2358 0.1531 0.1256 0.3277
Minimum −8.0061 −9.7679 −24.8296 −13.6192 −12.4004 −10.9522
Maximum 10.6383 13.0937 16.5225 23.7386 13.4513 14.5111
JB statistic (×103) 2.6264 1.4168 6.5262 3.8328 1.5325 2.7013

Table 2: Model order selection
Model AIC BIC
BEKK

BEKK (1,1) −80251.31 −80056.00
BEKK (1,2) −80225.91 −79995.09
BEKK (2,1) −80448.27* −80217.44*
BEKK (2,2) −80294.76 −80028.42

DCC
DCC (1,1) −81175.41* −80968.26*
DCC (1,2) −81173.41 −80960.34
DCC (2,1) −81173.87 −80960.79
DCC (2,2) −81171.86 −80952.87

DCC: Dynamic conditional correlation, BEKK: Baba, Engle, Kraft and Kroner, 
AIC: Akaike information criterion, BIC: Bayesian information criterion
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squared returns (volatility proxy) to compare models, the MAE 
is computed as bellow:



N

k k
k=1

1MAE
N

= σ −σ∑  (11)

Where, N is the number of observations, σ̂  is empirical (squared 
returns) and σ is estimated volatility at day k. Table 4 presents the 
MAE of each model:

MAE measures how close the estimated volatility from the empirical 
volatility. According to calculated values for both models, BEKK 
model performs better than DCC. This result is in accordance with 
the one we get when testing autocorrelation of standardized residuals 
of each model. The Ljung-Box Q-test statistics of BEKK(2,1) is 
less than DCC(1,1) in almost all cases. This is an indication that 

the part of autocorrelation explained by BEKK(2,1) model is more 
important than the one explained by DCC(1,1).

Another way to compare our models is checking the difference 
between the estimated volatilities. Figure 3 displays these 
differences. The calculated differences are small with a mean 
equal to 3.78 × 10−6. The positive value of the mean indicates that 
volatility estimated by DCC model is higher than BEKK model9.

To check if the two models well capture volatility clustering, we 
perform ARCH LM test10. Appendix E Table presents results of 
this test before and after estimation. Table E1 presents test results 
before the estimation. They show a high presence of volatility 
clustering in our series. Table E1 contains results of ARCH LM test 
of models residuals. Test statistics indicates that the null hypothesis 
of non-existence of ARCH effect (volatility clustering) in BEKK 

9 Because we substructed BEKK estimated volatilies from DCC ones.
10 It assesses the null hypothesis that a series exhibits no conditional 

heteroscedasticity (ARCH effect), Engle, R. (1988), Autoregressive 
conditional heteroscedasticity with estimates of the variance of United 
Kingdom inflation. Econometrica, 96, 893-920.

Table 3: T-statistic Ljung-Box Q-test for of autocorrelation of standardized residuals
Model Lag IAM LESU CTM MNG SOND HOL Critical value
DCC (1,1) 5 71.38 82.97 135.48 36.33 34.26 73.74 11.07
DCC (1,1) 10 80.27 91.82 138.07 40.89 39.89 80.24 18.31
DCC (1,1) 15 82.72 95.84 139.12 42.81 45.87 85.13 25
DCC (1,1) 20 85.84 106.21 144.24 45.15 48.1 96.46 31.41
BEKK (2,1) 5 66.93 85.8 148.46 25.98 27.93 70.62 11.07
BEKK (2,1) 10 74.91 95.04 151.1 31.08 33.03 77.47 18.31
BEKK (2,1) 15 77.33 97.46 152.07 32.37 38.64 81.9 25
BEKK (2,1) 20 79.9 108.53 158.19 34.74 41.23 94.9 31.41
DCC: Dynamic conditional correlation, BEKK: Baba, Engle, Kraft and Kroner

Figure 2: Dynamic conditional correlation and Baba, Engle, Kraft and Kroner estimated volatility versus empirical volatility portfolio

Table 4: Models mean absolute errors model
MAE diagonal BEKK (×10−2) 2.7842
DCC (×10−2) 3.3567
DCC: Dynamic conditional correlation, BEKK: Baba, Engle, Kraft and Kroner, 
MAE: Mean absolute error
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models cannot be rejected for all lags. However, statistics of the 
DCC(1,1) model indicate that it successfully captures volatility 
clustering in our series as the null hypothesis is accepted for all 
them and for all lags.

4.1, Forecasting with BEKK and DCC Models\Label
After we estimated BEKK and DCC models, we can perform 
volatility forecasting. Below the conditional covariance equation 
of the BEKK model:

( )' ' ' '
t+1 t t t tH = C C + A E ò ò  Â + B ˆˆ ˆ Hˆ B̂ˆ  (12)

Forecast with DCC model is done through two steps procedure. As 
stated in equation 8, the conditional covariance is written as below:

t+1 t+1 t+1 t+1H =D DΓ  (13)

The first step in the forecasting procedure with DCC model 
consists of predicting diagonal element of matrix Dt+1 using a 
GARCH(1,1) process. The second step consists of estimating 
matrix Γt+1 using equation 9. Once both steps are completed, the 
conditional covariance of DCC model can be deduced.

We will perform forecast for our assets for the period from 
21/10/2015 to 31/03/2016, the forecast is done ahead 1 day through 
this period. Figure 4 plots the foretasted volatility results for our 
equally weighted portfolio assets. The vertical dotted line in this 
figure separates estimation and forecast period. According to this 
figure, forecasted results show that they follow the same tendency 
as the estimated ones, also, the forecasts with both models appear 
to be stable. Similarly to section 3.4, we use the MAE to evaluate 
the quality of the forecasts. Table 5 presents the computed values 
of MAE for our forecasted results with squared returns used as 
volatility proxy. Computed MAE values show that DCC performs 
better than BEKK model: Computed MAE for DCC is lower than 
BEKK model for all assets.

4.2. Application to VaR
VaR measures the potential loss in value of a portfolio over a 
defined period at a given confidence interval. VaR is a capital 

regularity requirement to financial institutions, it is considered as 
a measurement of risk they are exposed too. The VaR of a given 
portfolio is defined as below:

VaR( )= X Xα α ′∑  (14)

Where, α is the confidence interval, σ is the variance covariance 
matrix and X is a column vector of asset values.

Covariance matrices already estimated for both models will 
be used in equation 14, the obtained results will be used as a 
performance measure to evaluate models DCC and BEKK in 
calculating VaR. The comparison is done through The dynamic 
quantile test introduced by Engle and Manganelli (2001)11.

We define the hit variable:

11 Engle and Manganelli, (2001), Value-at-risk models in finance. Working 
Paper 75, Working Paper Series, European Central Bank.

Figure 3: Difference between the estimated volatilities

Figure 4: Forecasted volatilities with dynamic conditional correlation 
and Baba, Engle, Kraft and Kroner models
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Hit(α)=Iα (α)-α (15)

It(α) is the binary variable associated to past observations of VaR 
violation at time t:

( ) ( )t t|t 1
t

 1, if r <VaR
I = 

0, otherwise 
− α

α 


 (16)

VaRt|t−1(α) is the conditional VaR

Each time VaR exceeds the asset value, the Hit variable takes the 
value of 1-α and α otherwise. From VaR definition, the Hitt(α) 
variable should be unpredictable based on its own lagged values or 
any other variable, in particular, past VaR and assets returns. The 
dynamic quantile test consists of testing the null hypothesis that 
all coefficients and the intercept, of a regression of this variable 
on its past values, VaR, and a set of other variables, are all null. 
In our study, we regress the hit variable on its past values (5 lags 
are taken), VaR, portfolio returns and squared portfolio returns. 
Our regression equation is as below:

( )
5

2
k t k t t t t

k=1

Hit = + HIT + VaR +  r + r + ò  −α γ β θ σ λ∑  (17)

Using an equally weighted portfolio for our stocks with a total 
value of 1000 MAD, we calculate VaR over a 1 day horizon and 
at a 95% confidence level. Results are presented in Figure 5. Both 
calculated VaRs have the same tendency, but DCC (1,1) model 
tends to estimate relatively higher values in comparison with 
BEKK (2,1) model. The dynamic quantile test regression results 
are presented in Table E3. According to obtained P-values, two 
variables (the intercept and squared returns) are not statistically 
significant, thus, the hypothesis of joint nullity of parameters of 
the regression is rejected.

Engle and Manganelli deduced a simple test, under the null 
hypothesis, The dynamic quantile test is equivalent to a conditional 
efficiency test. We denote by Ψ = (γ, β1,…, β5, θ, σ, λ) the vector 
of 2K+1 parameters and by Z the matrix of explanatory variables 
of equation 18. Wald statistic associated to conditional efficiency 
test, noted DQcc satisfies:



( ) ( )
' '

2
cc

ˆZDQ =  2K+1
1-

ψ ψ χ
α α

 (18)

Test results reject the hypothesis of joint nullity of parameters 
of equation 18. The Wald statistics calculated are 10003.87 and 
10005.76 for BEKK(2,1) and DCC(1,1) models respectively. 
These two values are highly greater than the critical value of chi-
square distribution which is equal to 19.9190 at 9° of freedom and 
1-α = 95% probability level. These results are in accordance with 
regression results presented in Table E3. We conclude from the 
dynamic quantile test done that both models failed to adequately 
calculate VaR in the case of our selected stocks.

5. CONCLUSION

Volatility is a key element in risk and asset management. It is a 
measure of assets risk based on the variance of returns. Volatility 
is not observable and then should be estimated. The most popular 
methods in estimating volatility are historical volatility, implied 
volatility and auto-regressive heterokedastic models, for example 
GARCH family models. The first model in GARCH family was 
introduced by Engle in 1982, the ARCH model, it was considered 
as a great invention in financial econometrics. Later on, many 
extensions of ARCH were developed, e.g., GARCH, EGARCH, 
etc. GARCH family models are useful only in estimating volatility 
for Univariate dimension, they are enable to estimate volatility 

Table 5: Models mean absolute errors for evaluating forecast 
Model IAM LESU CTM MNG SOND HOL
DCC (×10−2) 1.005 2.5100 2.6426 1.6493 3.2112 4.7359
Diagonal BEKK (×10−2) 1.2548 2.5881 3.1159 1.7949 4.3989 5.2302
DCC: Dynamic conditional correlation, BEKK: Baba, Engle, Kraft and Kroner

Figure 5: Dynamic conditional correlation and Baba, Engle, Kraft and Kroner models calculated value at risk plots
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and correlation when multiple assets are involved. Multivariate 
GARCH models were developed for this purpose.

The aim of this article was to examine correlation between 
stocks chosen from Casablanca stocks exchange markets using 
multivariate GARCH models. We selected six stocks that have 
the longest and continuous daily prices. Descriptive statistics of 
our series showed that volatility is not constant over time, also, 
we noticed that our data suffers from volatility clustering, this was 
confirmed by ARCH LM tests performed. We used in our study 
the most widely used multivariate GARCH models, BEKK and 
DCC. These two models have attracted a considerable interest in 
the financial econometric literature. Model order selection tests 
we performed showed that DCC(1,1) and BEKK(2,1) are the most 
suited to our series. The choice of DCC instead of CCC model 
was based also on test of dynamic correlation which showed that 
correlation is not constant over time.

Estimated models comparison showed that BEKK (2,1) performs 
better than DCC (1,1) in the case of our series. First the MAE in 
comparison to empirical volatility of BEKK is less than DCC, 
secondly, the Ljung-Box Q-test indicated that the part of volatility 
explained by BEKK is more important than DCC. However, we 
found out using ARCH LM test, that DCC captures well volatility 
clustering than do BEKK model. Another examination of estimated 
models is comparing estimated volatility to the empirical one. We 
used squared returns as a proxy for the empirical volatility. The 
computed values of the MAE showed that the fitting performance 
of BEKK is higher than DCC.

After we estimated BEKK and DCC for our series, we performed 
volatility forecasting. The forecasts with both models have the 
same tendency as estimated ones; also, they appear to be stable. 
The comparison between forecasted and empirical volatility 
showed that DCC performs better than BEKK. The easy 
computation is another advantage of DCC model, we noticed 
that it is less demanding in time than needs BEKK.

The estimated variance and covariance matrices using BEKK 
and DCC models were applied also to VaR calculation. VaR is 
one of the most popular tools used by financial institutions, it 
measures the maximum loss of a portfolio at a given confidence 
level and a time horizon. DCC model estimated a relatively high 
VaR values than BEKK, but with same tendency. The quality of 
the estimation was tested using the dynamic quantile test of Engle 
and Manganelli. This test results showed that both models failed 
to adequately estimate VaR for our series.
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APPENDICES
Appendix A: BEKK (2,1) coefficients estimation
Coefficient Estimation Standard error t-statistic
M (1,1) 0.000203 0.0000124 16.413
M (1,2) 0.00000219 0.00000303 0.72333
M (1,3) 0.00000138 0.00000263 0.524411
M (1,4) −0.00000145 0.00000373 −0.389404
M (1,5) −0.00000748 0.00000556 −1.346126
M (1,6) 0.000000726 0.00000334 0.217124
M (2,2) 0.0000154 0.00000168 9.147694
M (2,3) −0.000000529 0.000000896 −0.590486
M (2,4) −0.00000107 0.000000985 −1.089826
M (2,5) 0.00000389 0.00000288 1.347909
M (2,6) −0.0000000321 0.000000701 −0.045746
M (3,3) 0.0000288 0.00000244 11.81638
M (3,4) 0.00000112 0.00000106 1.057964
M (3,5) −0.000000104 0.00000253 −0.041084
M (3,6) −0.000000372 0.000000732 −0.508196
M (4,4) 0.0000304 0.00000287 10.60451
M (4,5) 0.00000131 0.00000322 0.406006
M (4,6) −0.000000539 0.000000879 −0.613408
M (5,5) 0.000161 0.0000146 10.98759
M (5,6) 0.00000451 0.00000298 1.512518
M (6,6) 0.00000357 0.000000444 8.037292
A1 (1,1) 0.353479 0.020463 17.27423
A1 (2,2) 0.295759 0.014473 20.4352
A1 (3,3) 0.278994 0.014584 19.1305
A1 (4,4) 0.327969 0.012393 26.46482
A1 (5,5) 0.482548 0.015469 31.19477
A1 (6,6) 0.017377 0.015566 1.116374
A2 (1,1) −0.455349 0.023959 −19.00575
A2 (2,2) −0.2132 0.021748 −9.803076
A2 (3,3) −0.100728 0.029604 −3.402446
A2 (4,4) 0.132033 0.027061 4.879112
A2 (5,5) 0.281524 0.033555 8.390009
A2 (6,6) −0.155057 0.005977 −25.9433
B1 (1,1) 0.646748 0.019445 33.26066
B1 (2,2) 0.920644 0.005184 177.5853
B1 (3,3) 0.892339 0.008073 110.528
B1 (4,4) 0.90744820 0.005967 152.0782
B1 (5,5) 0.71512 0.021343 33.50623
B1 (6,6) 0.984682 0.001094 900.3076
BEKK: Baba, Engle, Kraft and Kroner

Appendix B: DCC (1,1) coefficients estimation
Parameter Estimation Standard error t-value
ω1 135.28013 86.58288 1.562435091
α1 0.2712445 0.3367281 0.805529743
β1 0.762976403 0.007835544 97.37376282
ω2 165.1068612 0.1495558 1103.981666
α2 0.329009 0.1326704 2.479897551
β2 0.77881184 0.02112435 36.86796706
ω3 0.6372866 0.0610729 10.43485081
α3 0.41494041 0.03610632 11.49218226
β3 0.757185753 0.007019868 107.8632466
ω4 75.39039 108.76261 0.69316459
α4 0.1070037 162.6292249 0.000657961
β4 0.78191449 0.01259818 62.0656706
ω5 0.00178703 0.14218614 0.012568243
α5 0.02998864 0.28244741 0.106174243
β5 0.97726531 0.04096206 23.85781648
ω6 0.001356091 0.069170771 0.019604972
α6 0.173388 0.4464916 0.388334293
β6 0.88502061 0.02477999 35.71513185
DCCα 0.02011386 0.000254597 79.00283036
DCCβ 0.03955214 0.32286853 0.122502308
DCC: Dynamic conditional correlation
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Appendix C

Figure C1: Diagonal Baba, Engle, Kraft and Kroner model estimated correlations plot

Figure C2: Dynamic conditional correlation model estimated correlations plot
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Figure D1: Baba, Engle, Kraft and Kroner model standardized residuals plot

Appendix D

Figure D2: Dynamic conditional correlation model standardized residuals plot
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Appendix E

Table E1: ARCH LM test for daily returns
Series IAM LESU CTM MNG SOND HOL
P value 0 0 0 0 0 0
Test statistic 70.4189 132.6917 64.1082 89.5894 72.7168 113.9469
Critical value 3.8415 3.8415 3.8415 3.8415 3.8415 3.8415
ARCH: Autoregressive conditional heteroskedasticity

Table E2: ARCH LM tests for standardized residuals 
Model Lag Variable IAM LESU CTM MNG SOND HOL
DCC (1,1) 1 P value 0.5903 0.2470 0.4319 0.8208 0.4163 0.3343

Test statistic 0.2899 1.3399 0.6177 0.0513 0.6606 0.9323
Critical value 3.8415 3.8415 3.8415 3.8415 3.8415 3.8415

5 P value 0.5074 0.4419 0.7847 0.7379 0.2634 0.3167
Test statistic 4.2978 4.7913 2.4455 2.7539 6.4668 5.8941
Critical value 11.0705 11.0705 11.0705 11.0705 11.0705 11.0705

10 P value 0.4450 0.6387 0.8964 0.9044 0.4341 0.3057
Test statistic 9.9485 7.8987 4.9213 4.7949 10.0736 11.6994
Critical value 18.3070 18.3070 18.3070 18.3070 18.3070 18.3070

20 P-value 0.0924 0.0248 0.9980 0.6261 0.1185 0.1288
Test statistic 28.7685 34.2082 6.4938 17.4116 27.6275 27.2355
Critical value 31.4104 31.4104 31.4104 31.4104 31.4104 31.4104

BEKK (2,1) 1 P value 0.0103 0 0.3192 0.0201 0 0
Test statistic 6.5880 74.6317 0.9921 5.4027 20.4242 33.0170
Critical value 3.8415 3.8415 3.8415 3.8415 3.8415 3.8415

5 P value 0.0483 0.0000 0.9304 0.0993 0.0000 0.0000
Test statistic 11.1624 76.6855 1.3435 9.2558 33.8767 35.7401
Critical value 11.0705 11.0705 11.0705 11.0705 11.0705 11.0705

10 P value 0.0994 0.0000 0.9880 0.1226 0.0001 0.0000
Test statistic 16.0075 80.6279 2.6777 15.2671 36.0209 40.4832
Critical value 18.3070 18.3070 18.3070 18.3070 18.3070 18.3070

20 P value 0.0994 0.0000 0.9880 0.1226 0.0001 0.0000
Test statistic 16.0075 80.6279 2.6777 15.2671 36.0209 40.4832
Critical value 18.3070 18.3070 18.3070 18.3070 18.3070 18.3070

ARCH: Autoregressive conditional heteroskedasticity, DCC: Dynamic conditional correlation, BEKK: Baba, Engle, Kraft and Kroner

Table E3: Hit regression results
BEKK (2.1)

Variable Estimate Standard error t-Stat P-value
(Intercept) 0.515864396 0.038631123 13.35359553 1.89×10-39
H itt−1 −0.000961118 0.012400926 −0.077503762 0.93822847
H itt−2 −0.013410133 0.012349631 −1.085873133 0.277630857
H itt−3 0.00592022 0.012355105 0.479171987 0.631854604
H itt−4 −0.018955998 0.012358024 −1.533902056 0.125169454
H itt−5 0.010050019 0.012298799 0.817154508 0.413911337
VaRt −0.000582008 0.000707428 −0.822710689 0.410744284
rt −4.9×10-9 3.78×10-9 −1.295739961 0.19517447
rt2 −0.000396445 0.00000637 −62.23433128 0
DCC (1.1)
(Intercept) 0.501959029 0.03302687 15.19850449 3.83×10-50
H itt−1 −0.000799852 0.012404143 −0.064482643 0.948590642
H itt−2 −0.013250749 0.01234836 −1.073077657 0.283330979
H itt−3 0.006080367 0.012354503 0.492157991 0.622647174
H itt−4 −0.018782073 0.012356715 −1.519989192 0.128629324
H itt−5 0.01024675 0.012296703 0.833292402 0.40475263
VaRt −0.000303418 0.000583455 −0.520037083 0.603079833
rt −0.00000000497 0.00000000381 −1.304049237 0.192326573
rt2 −0.000396501 0.00000637 −62.23204228 0
DCC: Dynamic conditional correlation, BEKK: Baba, Engle, Kraft and Kroner, VaR: Value at risk


