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Abstract: This paper considers tests of parameters instability and structural change with known, 
unknown or multiple breakpoints. The results apply to a wide class of parametric models that are 
suitable for estimation by strong rules for detecting the number of breaks in a time series. For that, we 
use Chow, CUSUM, CUSUM of squares, Wald, likelihood ratio and Lagrange multiplier tests. Each 
test implicitly uses an estimate of a change point. We conclude with an empirical analysis on two 
different models (ARMA model and simple linear regression model “SLRM”). 
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1. Introduction 

The econometric analysis of time series is considered as an exclusive branch of econometrics. 
The latter is a relatively young discipline but the time series have been used before in many fields such 
as meteorology, astronomy, biology, economics, etc. The utility of time series consists to study 
variables over time and to examine the statistical analysis of observations regularly spaced in time. In 
fact, this study appears to have reached maturity during the 70s where significant developments have 
emerged. Indeed, conventional models couldn’t fit the data if we take into account the circumstances 
that may disrupt these data sets and because that new tests have appeared such as tests of parameters 
instability and structural change. 

Therefore, these tests consist to detect the existence of breakpoint(s) that may divide the total 
period into two or more sub-periods. After that, we pass to construct, for each sub-period, the 
appropriate model. But the problem proposed here, it is: how can we know that our model presents a 
change in its structure? And how can we detect the breakpoint(s) already existed? 

In this context, it should be noted that the parameters instability study plays an important role 
when trying to understand the economic mechanisms and to make projections. This instability may 
reflect structural phenomena (model misspecification, omitted variables, measurement error, etc.) or 
punctual events (oil crisis, economic policy measures, new regulations, etc.). 

In order to study the temporal instability problems, the econometricians have, recently, 
reached basic assumptions namely: the hypothesis of coefficients instability over time.  

To resolve this problem, we start to study, in the second section, different tests of parameters 
instability (also called tests of structural change). After that, we passed to apply these tests on 
two different types of models.  

The first model called ARMA, which will be applied to study the evolution of oil price. And 
the second one is rather a simple linear regression model used to study the evolution of financial asset 
prices following the change of market price. 

The remainder of this paper proceeds as follows. Section 2 examines the theoretical 
tests of parameter instability and structural change. Empirical results are presented and discussed in 
Section 3. Conclusion is provided in the last section. 

 
2. Tests of parameters instability and structural change: Theoretical study 

In this section, we will study some tests to demonstrate the existence of parameters instability. 
These tests help us to find the best suitable model for such a time series that is to say that we must 
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decide whether to keep the model in its integral form (if the parameters are fixed over the total period), 
or to divide it (if there is a breakpoint(s)). Several tests of parameters instability have been proposed in 
the literature with the most known: Chow test, likelihood ratio (LR) test, CUSUM test, CUSUM 
square test, Wald test, Lagrange multiplier (LM) test, etc.  

To all tests listed above, there are some important limits as:  
 Chow test aims to highlight the presence of a breakpoint at date “t”, where this date should 

be known as of the beginning of study. 
 CUSUM test consists to detect the instability of the intercept. 
 Wald test allows detecting instability for both the intercept and coefficients. 

2.1. Tests of parameters instability with known breakpoint: Chow (1960) Test 
This test is most commonly used in time series analysis to reveal the existence of a structural 

breakpoint. It consists to divide the total period into two sub-periods (this is a simple case of the 
existence of one breakpoint). Indeed, we will consider the first case of the stability of model 
parameters over total period “T” (for null hypothesis, H0), and we will assume the second case of the 
existence of a known breakpoint at the date T1(for alternative hypothesis, H1). 

So we have two cases:  
 The first one is:        ;    1,...t t ty x u t T                                                                   (1) 

 The first one is:       ,.t i t i ty x u        
1 1

1 1

1   if 1,...,         and  

2   if 1,...,  and  1

i t T T k
i t T T T T k
  

             
 (2) 

 Where K is the number of parameters;  
,i tu  and tu  are independent and asymptotically distributed as normal distribution, N(0, σ²). 

In this case, the two hypotheses will be written as follows:  
0 : iH    ; There is stability in parameters 

1 : iH    ; There is no stability in parameters  
In this test, the detection of breakpoint amounts to detect a significant difference between the 

sum of squared residuals (RSS) in the case of stability coefficients and the sum of the two sum squared 
residual respectively associated to the first and second sub-period (RSS1 + RSS2).  
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Chow test appears as a special case of Fisher (1970) test since it involves question about the 
equality between two coefficients groups. This test can be written in the form below: 
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  ; Where R = (I-k, Ik) and r = 0ℝ2k                         

The statistical test is: 1 2

1 2
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F F k T k
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  
   


                          (6) 

If F-statistic calculated exceeds F (k, T-2k), then we reject the null hypothesis of the absence 
of breakpoint and we will divide the total period into two sub-periods farthing this point (this date). 
2.2. Tests of parameters instability with unknown breakpoint 

Another approach proposes to use tests based on procedures that do not require necessarily 
knowledge of breakpoint date. Quandt (1960) discusses the null hypothesis of stable coefficients 
against a more general alternative hypothesis which assumes the existence of an unknown breakpoint. 
He considered a switching regression where the observations are divided into two separate regimes.  

 The first regime is:       1 1,   ; 1,...,t t tY X t m                                                          (7) 
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 The second regime is:  2 2,   ; 1,...,t t tY X t m T                                                    (8) 
We will study the flowing tests: likelihood ratio (LR), Wald, CUSUM and CUSUM of 

squares. These tests are based on least squares estimators. 
2.2.1. Likelihood ratio (LR) test of Quandt (1960) 

This test consists to verify if the observations in two consecutive time intervals come from the 
same regression or not. For that, we test: 

i) H0: The interval observations [1,m] and those of the interval [m+1,T] come from the same  

regression, ⊬ m = k+1,…,T-k-1. 

ii) H1: The interval observations [1,m] and those of the interval [m+1,T] come from two             
different regressions. 

Quandt (1960) proposes to estimate the date “m” by using the likelihood ratio. For this, 
he defined the following function: 

0

1

1 2

maximum likelihood /
log

maximum likelihood /

    log( ) log( ) log( )                            
2 2 2

(9)

m
H
H

m T m T
RSS RSS RSS

 


  

 
 
   

Where m = k +1,...,T-k-1, and k is the number of coefficients. 
RSS1, RSS2, RSS are the sum of squared residuals sum of squares related to the number of 

observations when the regression is respectively calculated on the first “m” observations, on the 
following (T-m) observations, and on the total period (“T” observations). 

If the likelihood ratio is high, then the probability that the alternative hypothesis H1 is verified 
will be high, too. 

By scanning the values of “m”, we seek the minimum of the function that suggests a break in 
the tested regression. Otherwise the estimated point, at which the transition from one ratio to other 
occurs, is the value “m” which m  reaches its minimum. 

The graphical analysis of m  should help us to determine whether the breakpoint is 
reached abruptly (random variation in regression coefficients) or is reached gradually (systematic 
variation in regression coefficients). 

In the same line, Kim and Siegmund (1989) examined the likelihood ratio (LR) test to detect a 
structural change in a simple linear regression. They considered that the null hypothesis remains the 
same ( 0H : indicates no structural change) While the alternative hypothesis 1H will divide 
into two parts:  

1
1H : indicates that the change affects only the intercept.  
2
1H : indicates that the change affects both the intercept and the slope. 

They tried to use these assumptions to determine the asymptotic distribution of likelihood ratio 
of Quandt (1960) by the statistic test under the null hypothesis of no structural change against two 
alternative hypotheses is functioned by Brownian movement (or Wiener process). 

Recently, Deng and Perron (2008) tried to examine the limit distribution of the cusum of 
squares test under general mixing conditions.  
2.2.2. CUSUM and CUSUM of squares tests 

We consider a model with “K” coefficients varying over time:  
  ; 1, ...,t t t tY X t T                                                          (10) 

The estimated coefficients can be found by the ordinary least squares (OLS) method 
based on the first “t” observations: ' 1 'ˆ ( )     ; ,...,t t t tX X X Y t K Tt    . 
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Similarly, the final estimator ˆ
t  of t  is identical to the OLS classical estimator. So, it can be 

calculated by using the recursive estimators as follows: ' 1 '
1 1 1 1 1

ˆ ( )     ; 1t t t t tX X X Y t K 
        . 

Finally, the estimator ˆ
t  of t  will be written as follows:  
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Where, 1, ,( , ..., )t t K tx x x . 
Brown, Durbin and Evans (1975) proposed coefficients stability tests based on recursive 

residuals defined as the standardized one step prediction errors. 
The one step prediction error will be written as follows:  

' '
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ˆ ˆ( )t t t t t t t te y x x                                                        (12) 
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      and the one step prediction 

errors are not correlated. In addition, 
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Where, (  ) 0  ; 1,...,t mE e e t T   . 
Thus, we can define recursive residuals “ tw ”, as the normalized prediction errors:  
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From these recursive residuals, Brown, Durbin and Evans (1975) developed graphical tests in 
order to accept or to reject the null hypothesis: 0 1 2: ... TH        . 

Indeed, if t  is constant until time t = m and differs after this date (t > m), then the recursive 
residuals “ tw ” will have a null average until the date t = m and an average differs to zero for the next 
period ( ( ) 0tE w  for t = 1,..., m   and  ( ) 0tE w  for t > m). 
2.2.2.1. CUSUM Test 

This test provides solutions for the alternative hypotheses containing the unknown 

breakpoint “m” from the following quantity: 
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                                                                 (15) 
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, and m = K+1,…,T. 

Under the null hypothesis, mW  must be inside the corridor ,m mL L . Where;  

(2 3 )
m

a m T K
L

T K
 




                                                           (16) 

With “a” is respectively equal to 1.143, 0.948 and 0.850 at the levels 1%, 5% and 10%. The 
null hypothesis will be rejected if the quantity mW  cut mL  or mL . It means that if the coefficients are 
not stable over time, then there may be a disproportionate number of recursive residuals Wt with the 
same sign which requires mW  exiting out of the corridor. 

If there is a negative slope (respectively positive), then the one step predicted values will 
be higher (respectively lower) than the observed values.  

In general, we use the CUSUM test to detect any systematic eventual movements where the 
coefficients values reflecting a possible structural instability. If a breakpoint is found, then we will 
reject the specification chosen throughout the period. 
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2.2.2.2. CUSUM of squares test 
If we want to detect random movements (those that do not necessarily come from a structural 

change in coefficients), Brown, Durbin, Evans (1975) suggest CUSUM of squares test. 
This test, which uses the sum of squared recursive residuals, is based on the graph of the following 
quantity:  
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Under the null hypothesis “ 0H ”, the quantity “ ms ” follows a Beta distribution with a mean 
equals to E ( ms ) = [(m-K)/(T-K)] and is framed by the corridor ±C+[(m-K)/(T-K)] where “C” is the 
Kolmogorov-Smirnov statistic. If ms  comes out of the corridor at the date t = m, then there exists a 
random rupture reflecting the instability of the coefficients for this date. 

In the same way, we notice that many extensions were made to develop specially this test by 
Ploberger, Krämer and Alt (1989). In other extension, Krämer, Ploberger and Alt (1988) studied the 
dependent variable models. Kao and Ross (1995) investigated the models with correlated perturbations 
over time. In the same line, Ploberger and Krämer (1990) extend the CUSUM test based on OLS 
residuals, and they showed that this test can be applied with OLS residuals and not only with recursive 
residuals. The inconvenience of CUSUM and CUSUM of square tests is that these tests having 
asymptotically a low level of coefficients instability but not at the entire vector of coefficients. To 
solve this problem, Ploberger, Krämer and Kontrus (1989) suggested that the parameters test should be 
based on the fluctuation test rather than the recursive residuals. A similar study was suggested by Sen 
(1980) for the case of simple regression model and by Ploberger (1983) for the case of fluctuation test. 
In the same way, Ploberger, Krämer and Kontrus (1989) considered models with varying parameters 
and suggested that the fluctuation test is based on the rejection of the null hypothesis of parameter 
stability tests any time that these tests float a lot. 

Their test statistic is:  
( ) ( ) ' ( ) 1/ 2 ( ) ( )
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ˆ ˆmax ( ) ( )

ˆ
T T T T T

i it K T
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Where;                                   
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And .


 denotes the maximum norm. 
They derived the limits of the distribution of the statistical test and they tabulated tested 

values by using Monte Carlo methods. They also showed that the fluctuation test has non-
trivial local power regardless of the particular type of structural change. However, Ploberger, Krämer 
and Kontrus (1989) showed from Monte Carlo methods results that neither the fluctuation test nor the 
CUSUM test dominates each other for the small sample size. These authors compared both 
tests (otherwise the fluctuation test and the CUSUM test) and they found that the fluctuation test 
can help us in case of several points of breakpoints. Another type of tests was proposed by Leybourne 
and McCabe (1989), Nabeya and Tanaka (1988) and Nyblom (1989) whose considered the 
nonstationarity of parameters at the alternative hypothesis. 
2.2.3. Wald test 

The likelihood ratio (LR) test of Quandt (1960) and the procedures of Kim and Siegmund 
(1989) follow the same procedures of sup F test (also noted Max Chow) because their procedures 
seek to discover the meaning of the maximum value of the likelihood ratio statistic in models based on 
recursive residuals. 

Andrews (1993) derived the asymptotic distribution for a similar test of likelihood 
ratio with a single unknown breakpoint (Quandt test). This is analogous to Wald (W) and Lagrange 
multiplier (LM) tests. This author proved that his “Sup F” test (or Max Chow) has a better power 
properties than CUSUM test and  fluctuation test (especially in the case of linear 
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model). He provided asymptotic critical values of significance levels with 1%, 2.5%, 5% and 10%. 
And he identified three regimes from autoregressive model of order 1. AR (1) is defined as follows:  

1   ; 1,...,t t ty y t T     , and  (0,1)t iid N                                (20)   
Under the null hypothesis of absence of breakpoint, Equation 20 will be estimated by OLS. 
Assuming now that the model contains a breakpoint at time t = m, we will have therefore: 

1 1 1,

2 1 2,

  ; 1,...,
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t t t

t t t

y y t m

y y t m T
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 




   
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Where, 1,t and 2,t are the residuals obtained, respectively, for sample 1 and sample 2. 

With '
1 1 1

'ˆ ˆ ˆ ˆ,  RSS RSS     , and 2 2 2
'ˆ ˆRSS   .  

Sup-statistics suggested by Andrews (1993): 
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max .
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 
   

                                                        (23) 

Where π = (m/T), it is customary to take π ∈ [0.15, 0.85], so that the breaks, which appear in 

the extremities, will be eliminated. Diebold and Chen (1996) showed that the use of asymptotic critical 
values suggested by Andrews (1993) leads  to distortions especially if the test is performed for finite 
sample size, then they suggested that the best procedure to obtain critical values for finite samples 
size is the simulation methods (such as Bootstrap method). 

Andrews and Ploberger (1994) developed these tests with stronger optimality conveniences 
than those developed by Andrews (1993). These statistics are defined by the Wald test.  

We just notice that the definitions for the LM and LR statistics are similar and the asymptotic 
distributions are the same for the statistical laws of W, LM and LR. 

Let T1 < m < T2, with [T1, T2] is the interval where the breakpoint “m” appeared. 
We consider Wald’s test-statistic “ *W ” at the break time t = m:  

  
1 2
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T m T
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                                                                                                   (24) 

The statistical tests suggested by Andrews and Ploberger (1994) are:  
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Based on large regular conditions, Andrews (1993), Andrews and Ploberger (1994) and 
Andrews, Lee and Ploberger (1996) showed that the asymptotic distributions of statistical tests are 
given by Wiener process. The statistical tests suggested in this case are:  
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Where, 1 = (T1/T), 2 = (T2/T),    '( ) ( ) . ( ) ( )
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 and “W” is a vector 

with order k of independent Brownian movement on [0, 1] that if “ ” is known, then “W” follows a 
chi-square with order k. 
2.2.3.1. Procedure of Wald test 

Consider the parametric model indexed by parameters t  for t = 1, 2,..., T. The important 
hypothesis considered here is concerned the stability of parameters: 0 0:   ; 1tH t     

The existence of unknown breakpoint “m” appears only in the alternative hypothesis which is 

given by: 1,
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The unknown breakpoint “m” can be written as:  
 m = T.π   π = (m/T)                                                       (30) 

Where π ∈ [0,1] and “T” is the sample size. When “π” is known, Wald test will 

be equivalent to Fisher (Chow test). Indeed in this study, the statistic form is considered as follows:  
 ( ),  with 0,1tSupW


 


                                                  (31) 

Where, Π is a known restricted interval containing all possible breakpoints. When we haven’t 
information about the existence and the number of breakpoint, the choice will return to use Chow test. 

In general, Wald test doesn’t have standard asymptotic distribution. Because that we consider 
the set of breakpoints noted Π is [0,1] which isn’t desirable because the statistical test  doesn’t 
converge in probability. But it may have some asymptotic properties in the case of sample with a high 

size and a low significance level. These results are proved by Davies (1987). But, if Π ⊂ ]0,1[,  we 

will confirm that this statistic converges in distribution. So when no information is given about the 
breakpoint, we propose the use of restricted range Π= [0.15, 0.85]. 
2.2.3.2. Asymptotic properties of the Wald test statistic 
2.2.3.2.1 Asymptotic distribution according to the null hypothesis 

We will introduce the asymptotic distribution of Wald test statistic under the null hypothesis. 

i) For set Π ⊂ [0,1], the following processes indexed by π ∈ Π satisfy:  

( )tW  => Q ( )p   ; ( ) Q ( )t pdSupW Sup    
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Where ( )pB  is a vector of order “p” for independent movements in Brownian 
motions on [0,1] restricted to Π. 
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ii) For a fixed point   ∈ [0,1], Q ( )p  follows a chi-square distribution with “p” degrees. The 

asymptotic distribution of ( )tSupW  under H0 does not depend on nuisance parameters except the 
dimension “p”. So, the critical values for statistics can be tabulated. 

iii) The purpose of Π, to be far from 0 and 1, is taken to ensure that the estimators, 

described above on the statistical test which are presented, are uniformly consistent for π ∈ Π 

and that the function ( )pB   presented in Q ( )p  is continuous. 

iv) In fact, if Π = [0,1]  then the statistical test ( )tSupW  will not converge in distribution. 
2.2.3.2.2. Asymptotic critical values 

The critical values of statistical test ( )tSupW  are based on the asymptotic distribution, 
noted Q ( )pSup  . We propose “ c ” calculated by:  Prob( Q ( )pSup c  ) = α. 

If the interval “Π” is not symmetric, especially with Π = [ 1 , 2 ] and 0 < 1 < 2  < 1, then 
we will have:  

 
2 1

1 2

'( ) ( )
Prob Q ( ) Prob( sup

(1 )1, (1 )

)p
BM s BM s

Sup c c
s

s
 

 
 

 
 
 
 

  



                      (33) 

Where, BM(s) denotes a vector of order “p” with independent movement of Brownian 
motions on [0,+∞[. 

Consequently, the critical values, based on the distribution
 1 2,
sup Q ( )p

  



, depend to 1 and 

2 only through the parameter “ ” defined as:  

   2 1

1 2

(1 )
(1 )

 


 





                                                               (34) 

We can calculate the critical values non-tabulated by a linear interpolation method. 
2.3. Tests of parameters instability with multiple breakpoints 

Consider the multiple linear regressions model with “m” breaks (that is to say that we 
have “m+1” sub-periods) below:  

' '
1  ; 1,...,t t t j t j jy x z u t T T                                               (35) 

With j = 1,..., m+1,  0 0T  and 1mT T  . 
In this model (Equation 35), we can define ty  as a dependent variable observed at the time t, 

tx  ∈ ℝp and tz ∈ ℝq are two vectors of regression,  and j are two vectors of regression coefficients 

and tu  as an error term. 
We consider the unknown breakpoints (T1,..., Tm) with iT =[ i T] for 0< 1 < ...< i < ..< m <1. 
If the date of breakpoint “m” is known, then (T1,..., Tm,  , 1 , 2 ,..., 1m  ) will be 

estimated by the least squares method. 
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For any m-partition (T1,..., Tm), denoted by jT , the least squares 

estimators associated to  and j are obtained by the minimizing the objective function 

 
1

21 ' '

1 1

i

i

Tm

t t t i
i t T

y x z 




  
   under the constraint 1   ; 1,...,i i i m     . 

We conclude after that the estimators  ˆ
jT and  ˆ

jT obtained by the sum of squared 

residuals  1 mT ,...,TTS .  

Finally, the estimators of  1 mT ,...,T breakpoints are given by:  

    1 m 1 m
ˆ ˆT ,..., T T ,..., T

T
S                                                 (36) 

And obtained by the minimization objective function under the constraint 1i iT T   ≥  h ≥ q. 

If jT is the optimal partition, then the regimes will be estimated by:  

  ˆ ˆ
jT  ;   ˆ ˆ

jT   

In this paper, we will explore the tests proposed by Bai and Perron (1998), Bai (1999), Bai and 
Perron (2003), Bai and Perron (2006), Bai and Ng (2007), Kim and Perron (2009), Kejriwal and 
Perron (2010) and Chen, Gerlach and Liu (2011) and adapted to many breakpoints and we propose to 
investigate the following three hypothesis tests: 
Hypothesis.1: H0: absence of breakpoints against H1: presence of fixed and known breakpoints: 

Bai and Perron (1998) considered the supF test for testing:  
H0: Absence of breakpoints                                                   
H1: Presence of “k” known breakpoints   
The Fisher statistic is given by:  

 
  1' ' ' '

1 k

x1 ( 1)
,..., ,

R R Z M Z R RT K q p
F q

T kp RSSk

 
 



  
                       (37)  

R is the conventional matrix,    ' ' ' ' '
1 2 1,..., k kR        , ' ' 1

X ( )M I X X X X  , RSSk : 

is the sum of squared residuals under the null hypothesis,  '
1 T, ...,X xx ,   ' '

1 1, ..., k    , 

 1

'

1,...,
i iT TZ ZZ
   and  1 1,..., kZ ZZ diag  . 

Hypothesis.2: H0: absence of breakpoints against H1: presence of fixed and unknown breakpoints: 
Bai and Perron (2006) considered the DmaxF test for testing:  
H0: Absence of breakpoints                                                                                                     
H1: Presence of “k” unknown breakpoints   
After fixing an upper bound for “k”, denoted “M”, the statistic of Fisher “DmaxF” will be 

written as follows:  

1 k
1 1 k1 ,...,

max ( , ,..., , ) max sup ( ,..., , )t M mm M
D F M a a q a F q

 
 


  

                          (38) 

At this level, we can define the following set for an arbitrary positive number “ε”, it is an 
adjustment parameter which imposes a minimum length “h”, so it will be defined as ε =(h/T) and helps 
us to obtain the quantity:  

                1 k i+1 i 1 m, ..., ;  ,  ,  1                                         (39) 

Where ma  is a weight function,   1< m < M. 
Hypothesis.3: H0: presence of k breakpoints against H1: presence of (k+1) breakpoints: 

Bai and Perron (2003) considered the Wald test for testing:  
H0: Presence of “k” breakpoints                                                   
H1: Presence of “k+1” breakpoints   
In this case, the Wald statistic will be written as follows:  
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    
,

1 k 1 i-1 i k1 1

2

ˆ ˆ ˆ ˆ ˆ ˆˆT ,...,T min inf T ,...,T , ,T ,...,T
1

sup
ˆ

iT Ti k
t

S S
F k

k





   


  

 
 

            (40) 

Where,  , i-1 i i-1 i i i-1
ˆ ˆ ˆ ˆ ˆ ˆ, T .(T T ) T .(T T )i          and 2̂  is the estimator of 2 . 

3. Tests of parameters instability and structural change: Empirical analysis 
3.1. ARMA Model: Econometric approach based on U.S oil price 
3.1.1. Statistical properties of data 

Oil price data that we used in our study are monthly and measured in U.S. dollar per Barrel 
from January 1946 until December 20101. Then we have 780 observations (presented in Figure 1).  

 
Figure 1. Monthly spot oil price in U.S. dollars per barrel (January1946 – December 2010) 

 
Firstly, we will study the stationarity of our series. Secondly, we will choose the appropriate 

ARMA model based on the optimal lags number. And finally, we will apply the parameter instability 
tests on the appropriate model to verify the presence of breakpoints. We will consider in this paper 
some details existed in the work of Chevallier (2011). 
3.1.1.1. Unit root test (ADF test) 

The first tests of Fuller (1976) and Dickey and Fuller (1979) are based on the estimation of 
Autoregressive (AR) process. These tests are the most used because of their simplicity, but they also 
suffer from several critics. These critics have led to another unit root tests proposing by Phillips and 
Perron (PP, 1988) and Kwiatkowski, Phillips, Schmidt and Shin (KPSS, 1992). 

Generally, we use the Augmented Dickey-Fuller (ADF, 1981) test which consists to study the 
logarithmic series, denoted “ log( )t tLy y ”, as follows: 

H0: tLy  is non stationary        Against          H1: tLy  is stationary 
We begin by estimating the general model with intercept and trend (Equation 41):  

1
1

. . .
p

t t j t j t
j

DLy t Ly DLy     


                                          (41) 

Where tDLy  is tLy  in first difference and “ ” and “  ” are, respectively, indicated intercept 
and trend coefficients. 

The estimation of ADF models requires choosing the optimal lags number “p” concerned 
Autoregressive part. For this, we can use the correlogram of the series tDLy  finding in (Figure 7) to 
conclude that p = 1. 

i) Estimate model with intercept and trend (Equation 41):  

This is the same equation then we have: 1
1

. . .
p

t t j t j t
j

DLy t Ly DLy     


      

                                                
1 Source: http://research.stlouisfed.org/fred2/series/OILPRICE  
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According to the table (Table 1), the trend is not significantly different to zero (2.36 < 2.78), 
we pass then to estimate a model with intercept, but without trend. 

ii) Estimate model with intercept, without trend (Equation 42):  

1
1

. .
p

t t j t j t
j

DLy Ly DLy    


                                           (42) 

The intercept is not significantly different to zero (1.69 < 2.52) (Table 1), we pass then to 
estimate a model without intercept or trend. 

iii) Estimate model without intercept and trend (Equation 43):  

1
1

. .
p

t t j t j t
j

DLy Ly DLy   


                                             (43) 

The statistical value given by ADF test is equal to 1.19 (Table 1), while it is higher than the 
theoretical value -1.95 at the 5% level. We therefore accept the null hypothesis of non stationary of the 
series tLy .  

To determine the order of integration of this series, we will repeat the same procedure on the 
first difference of the series tLy , denoted tDLy .  

The graph of the series in first difference, (Figure 6), suggests that tDLy is stationary. 
i’) Estimate model with intercept and trend (Equation 44):  

2 2
1

1
. . .

p

t t j t j t
j

D Ly t DLy D Ly     


                                   (44) 

The trend is not significantly different to zero (0.03 < 2.78) (Table 1), we go then to estimate 
a model with intercept, but without trend. 

ii’) Estimate model with constant, without trend (Equation 45): 
2 2

1
1

. .
p

t t j t j t
j

D Ly DLy D Ly    


                                     (45) 

The intercept is not significantly different to zero (1.84 < 2.52) (Table 1), we have then to 
estimate a model without constant or trend. 

iii’) Estimate model without intercept and trend (Equation 46):  
2 2

1
1

. .
p

t t j t j t
j

D Ly DLy D Ly   


                                           (46) 

The statistical value given by ADF test is equal to -22.1 (Table 1), and it is lower than the 
theoretical value of -1.95 at the level of 5%. We therefore reject the null hypothesis of non 
stationary of the series tDLy .  

We deduce that the series tDLy  is integrated of order zero, I (0). So, the series tLy is 
integrated of order one, I (1). 

 
Table 1. Unit root test (ADF test) results of _t tLy LOIL PRICE  

 Level   1st difference  

Trend & intercept Intercept               None                          Trend & intercept Intercept               None                  

3
0H :  = 0           

ˆt


=(-2,55)(> -3,54) 

 = 0 

2
0H :  = 0           

ˆt


=(-0,96)(> -2,95)      

 = 0 

3
0H :  = 0           

ˆt


= 1,19(> -1,95)          

  = 0 

3
0H :  = 0           

ˆt


=(-22,3)(< -3,54) 

   0 

2
0H :  = 0           

ˆt


=(-22,3)(> -2,95)      

 = 0 

3
0H :  = 0            

ˆt


=(-22,1)(< -1,95)          

   0 

*Trend & intercept 

ˆt


= 2,36 (< 2,78)    

 = 0 

*Intercept              

ĉt = 1,69 (< 2,52)   

 c = 0 

* Decision:   

tLy  is NS 

 1st difference  

*Trend & intercept  

ˆt


= 0,03 (< 2,78)    

 = 0 

* Intercept                

ĉt = 1,84 (< 2,52)  

 c = 0  

* Decision:                
tDLy  is  I(0)      

 tLy  is  I(1) 

NS: Non-Stationary 
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3.1.1.2. Figures analysis  
According to the figures of the series  _t ty OIL PRICE  (Figure 1 and Figure 2), we note 

that it is not stationary. So, we can predict that there is a change in its structure following the first oil 
shocks of the global crises. This series appears non stationary (Figure 2) and this intuition can be 
enhanced by studying the correlogram (Figure 3) where all ACF (Autocorrelation Function) in this 
series are significantly different to zero and decreases slowly towards zero. So, we confirm the 
nonstationarity of this series. 

 
Figure 2. Evolution of the series 

_t ty OIL PRICE  
Figure 3. Correlogram of the series 

_t ty OIL PRICE  

  
 
The including of logarithmic term to our series _t ty OIL PRICE , allows us to 

obtain _t tLy LOIL PRICE , but it seems also non-stationary (Figure 4) and this intuition can be 
justified by studying the correlogram (Figure 5) where all ACF (Autocorrelation Function) in this 
series are significantly different to zero and decrease slowly towards zero. So, this result confirms the 
nonstationarity of this series, too.  

 
Figure 4. Evolution of the series 

_t tLy LOIL PRICE  
Figure 5.  Correlogram of the series 

 _t tLy LOIL PRICE  

  
 
But on the contrary, the series _t tDLy DLOIL PRICE  appears stationary (Figure 

6) because the upward trend of the base series and even the logarithmic series was removed, and the 
average of the new series is around the x-axis. In addition, this result of the stationarity of this series 
can be justified by the correlogram (Figure 7) which don’t show a particular structure at ACF 
(Autocorrelation Function) and PACF (Partial Autocorrelation Function). 

 
 



Tests of Parameters Instability: Theoretical Study and Empirical Analysis on Two Types of  
Models (ARMA Model and Market Model) 

258 

Figure 6. Evolution of the series 
_t tDLy DLOIL PRICE  

Figure 7. Correlogram of the series 
_t tDLy DLOIL PRICE  

  
 
Series _t tDLy DLOIL PRICE  is stationary. So, the series _t tLy LOIL PRICE  is 

stationary in first difference, then it is integrated of order 1, I(1). Therefore, tDLy is I(0) and tLy is 
I(1). So, ty  is I(1). 
 
3.1.1.3. Optimal lags number of ARMA (p, q) model 

We begin by identifying “p” and “q” optimal lags with the use of the correlogram (Figure 7) 
of the stationary series, _t tDLy DLOIL PRICE . Looking at the same correlogram, we conclude that 
only the first Partial Autocorrelation (PAC) exceeds the confidence interval, so 1,1  ≠ 0  p = 1.  

For completing the order “q”, it’s essential to watch the number of AC that exceeds the 
confidence interval. In this case, we find that only the two autocorrelation AC exceed the confidence 
interval, so φ1≠0 and φ2≠0  q = 2.  

Following these results, we obtained 3 process: AR(1), MA(2) and ARMA(1,2). 
We will estimate these three models for choosing the most appropriate one: 
* AR(1): 1 1t t tDLy c DLy     
          1 1_ _t t tDLOIL PRICE c DLOIL PRICE      
H0: p’ = p - 1 = 0 1 = 0 AR(0)                                                         

H1: p’ =   p    = 1 ⇔ 1 ≠ 0⇔ AR(1)      

1̂
t


= 6.217878 [> 1.96 (prob=0.0000)] (Table 2), then we will reject the null hypothesis and 

we will have 1  ≠ 0  AR(1). 
* ARMA (1,2): 1 1 1 1 2 2t t t t tDLy c DLy             
                    1 1 1 1 2 2_ _t t t t tDLOIL PRICE c DLOIL PRICE              
H0: p’ = p - 1 = 0  1 = 0 MA(2)                                                         

H1: p’ =   p    = 1  1 ≠ 0⇔ ARMA(1,2) 

1̂
t


= 0.217428 [< 1.96 (prob= 0.8279 > 1%, 5% and 10%] (Table 2), then we will 

accept the null hypothesis and we will have 1 = 0  MA(2). 
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* MA(2): 1 1 2 2t t t tDLy c           
           1 1 2 2_ t t t tDLOIL PRICE c            
H0: q’ = q - 1 = 1  2  = 0  MA(1)                                                         

H1: q’ =   q    = 2 ⇔ 2  ≠ 0 ⇔ MA(2)  

2̂
t


= 1.720231 [< 1.96 (prob= 0.0858 > 5%)] (Table 2), then we will accept the null 

hypothesis and we will have 2  = 0  MA(1).  
* ARMA (1,2): 1 1 1 1 2 2t t t t tDLy c DLy             
                    1 1 1 1 2 2_ _t t t t tDLOIL PRICE c DLOIL PRICE              
H0: q’ = q - 1 = 1  2  = 0 ARMA(1,1)                                                              

H1: q’ =   q    = 2 ⇔ 2  ≠ 0 ⇔ ARMA(1,2)  

2̂
t


= 0.325451 [< 1.96 (prob=0.7449 > 1%, 5% et 10%)] (Table 2), then we will 

accept the null hypothesis and we will have 2  = 0  ARMA(1,1). 
Until this stage, we obtain 4 processes AR (1), MA (1), MA (2) and ARMA (1,1). 
 
Table 2. Estimation of ARMA(p, q) models (Dependent variable: DLOIL_PRICE) 

Model Variable Coefficient Std. Error t-Statistic Prob. 

ARMA(1,0)  

AR(1) 

C 

AR(1) 

0,005575 

0,217847 
0,003020 

0,035036 

1,846340 

6,217878 
0,0652 

0,0000 

ARMA(0,2)  

MA(2) 

C 

MA(1) 

MA(2) 

0,005565 

0,212526 

0,061650 

0,003006 

0,035830 

0,035838 

1,850902 

5,931549 

1,720231 

0,0646 

0,0000 

0,0858 

ARMA(1,2) C 

AR(1) 

MA(1) 

MA(2) 

0,005588 

0,119559 

0,094737 

0,039003 

0,003044 

0,549876 

0,549622 

0,119842 

1,835479 

0,217428 

0,172367 

0,325451 

0,0668 

0,8279 

0,8632 

0,7449 

Subsequently, we test the absence of residuals autocorrelation: 
* AR (1): the probabilities, presented in the figure (Figure 8), are all higher than 5%, then we 

deduce the absence of residuals autocorrelation. In this case, we conserve the model “AR(1)”. 
* MA (1): There is a presence of residuals autocorrelation in order of 6, 7, 13 and 15 verified 

by the figure (Figure 9). Then we will eliminate this model in the next stage. 
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Figure 8. Residuals Correlogram for AR(1) Figure 9. Residuals Correlogram for MA(1) 

  
 
* MA (2): There is a presence of residuals autocorrelation in order of 6 and 15 verified by the 

figure (Figure 10). And we will eliminate this model in the next stage, too. 
* ARMA (1,1): There is a presence of residuals autocorrelation to the order of 6 and 15 

verified by the figure (Figure 11). Through to The next stage, this model will be eliminated. 
 

Figure 10. Residuals Correlogram for MA(2) Figure11.Residuals Correlogram  for  
ARMA(1,1) 

 
 => Finally, We must retain the model: AR(1). 
 

3.1.2. Application of parameters instability tests 
According to the figure of the series _t tDLy DLOIL PRICE (Figure 6) and the result of 

the unit root test (ADF), we can conclude that this series is stationary, but we can predict the 
presence of breakpoints for some dates.  
 
3.1.2.1. Tests of CUSUM, CUSUM of squares and recursive residuals 

Applying the tests of CUSUM, CUSUM square and recursive residuals on the model AR(1), 
we will obtain these three figures (Figure 12, Figure 13 and Figure 14). 
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Figure 12. CUSUM test 

 

Figure 13. CUSUM of squares test 

 
 

Figure 14. Recursive residuals test 

                                  
 
For the CUSUM test (Figure 12), the test statistic is not outside the corridor. On the contrary, 

the statistic test of CUSUM of squares (Figure 13) is outside the corridor and it's the same for 
statistics of recursive residuals test (Figure 14). We conclude then the existence of break points. 

 
3.1.2.2. Chow test 

Any event doesn’t cause a sudden shock, it is necessary to require the economic agents, the 
public authorities and the monetary authorities to take immediate decisions to reduce or even eliminate 
the effects of this shock on the economy. Hence the choice(s) item(s) will be chosen properly break 
from the figure (Figure 1) or (Figure 2). 

By applying Chow test for the months of years 1973 and 1974, we can consider the month of 
February 1974 as a breakpoint because their p-value is equal to  0.000534 then it is less than 10%, 
5% and even at the level 1% (See: Table 3). 

 
Table 3. Chow test results (February 1974) 

Chow Breakpoint Test: 1974: 02   

  F-statistic 

  Log likelihood ratio 

7,608498 

15,14727 

Probability 

Probability 

0,000534 

0,000514 

 
The estimation of the model AR (1) on the two new sub-periods gives us the Table 4. 
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Table 4. Estimation of AR(1) model (Dependent variable: DLOIL_PRICE) 
Period Variable Coefficient Std. Error t-Statistic Prob. 

                            

1946: 03 - 1974:01 

C 

DLOIL_PRICE(-1) 
0,006527 

-0,013965 
0,002859 

0,054794 

2,282836 

-0,254867 
0,0231 

0,7990 

                           

1974: 02 - 2010:12 

C 

DLOIL_PRICE(-1) 
0,003464 

0,296694 
0,003515 

0,045475 

0,985242 

6,524376 
0,3250 

0,0000 

 
3.1.2.3. Results interpretation 

We conclude that F-stat is very high (F-stat = 38.66200), the probability is null and the two 
coefficients are lower than the theoretical value “1.96” (Table 5). Hence we can predict the existence 
of one or many breakpoints. 

 
Table 5. Fisher statistic and R² of AR(1) model (Dependent variable: DLOIL_PRICE) 

Model F-Statistic Prob. R² 

ARMA(1,0)  AR(1) 38,66200 0,000000 0,047458 

 
If we divide the total period into two sub-periods as follows: (01/01/1946: 01/01/1974) and 

(02/01/1974: 12/31/2010), we note that in the first sub-period F-stat = 0.064957 is less than a Chi-
square χ ²(p = 1) and the probability is higher than 1%, 5% and even 10%. But the R² is quite low 
(R²=0,000195  0) (Table 6) and the coefficient linked to the series of oil price lagged by one period 
is not significant (= |-0.254867|<1.96) (Table 4) even with the elimination of the intercept. So there 
are another breakpoint(s) in this period, that it (they) can be predicted by the figure of recursive 
residuals (Figure 14).  

As against for the second sub-period, we see that the coefficient associated to the series of oil 
price lagged by one period is significant (= 6.524376 > 1.96) (Table 4) and remains significant even 
with the elimination of the intercept, but F_stat = 42.56748 is higher than a Chi-square χ ²(p = 1) 
(Table 6) and the probability is null. So we can predict, with the use of the figure of recursive 
residuals (Figure 14), the existence of other breakpoint(s). Finally we conclude that with “p” 
breakpoints, we present (p +1) periods and that’s return to estimate (p +1) models. 

 
Table 6. Fisher statistic and R² of AR(1) model (Dependent variable: DLOIL_PRICE) 

Period F-Statistic Prob. R² 

1946: 03 - 1974:01 0,064957 0,798983 0,000195 

1974: 02 - 2010:12 42,56748 0,000000 0,088028 

 
3.2 Simple Linear regression model: Econometric approach based on the market model 

With the market model, we can describe the specification of the return-generating process for 
the return of a financial asset “j” related directly with the market return. In other hand, the linear 
market model implies the security market line associated with the Capital Asset Pricing Model 
(CAPM) proved by Sharpe (1963, 1964), Lintner (1965), and Mossin (1966). We will start reminding 
the essential characteristics of this type of model. Subsequently, we consider what methods 
can be helped us to estimation a market model. We will examine in particular the 
stability of the relationship between these two factors. 
3.2.1. Theoretical study of the market model 
3.2.1.1. Model presentation 

The market model was presented earlier by Sharpe (1963).  
We notice by ,j tR , the return of the financial asset “j” measured at time “t”:  

, , , 1log( ) log( )j t j t j tR RP                                                      (47) 
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Where, “ ,j tP ” is the price of the financial asset “j” measured at time “t”. 

We notice by “ ,M tR ” the market return.  
The market model explains the evolution of financial asset returns "j" by the market return.  
The relationship between these two factors can be written as a linear regression model:  

2
, , , ,.  ;  (0, )j t j j M t j t j tR R N                                          (48) 

 
3.2.1.2. Model estimation 
3.2.1.2.1. Prior assumptions 

There are five conventional assumptions, such as: 
E( ,j t ) = 0    ;    V( ,j t ) = 2

    ;   E( , , 'j t j t  ) = 0    ;   E( , ,j t M tR ) = 0    ;    E( , ,j t k t  ) = 0 
3.2.1.2.2. Estimation of the coefficients  

The two coefficients j  and  j  can be estimated by OLS method. And the final result can be 
given by these two equations:  

, ,
1

2
,

1

( )( )
ˆ

( )

T

j t j M t M
t

j T

M t M
t

R R R R

R R
 



 



                                                  (49) 

ˆˆ .j j j MR R                                                           (50) 

Where jR  and MR are respectively the average of ,j tR  and ,M tR  for t = 1,2,...,T..  
With estimated values  of α and β, we deduce the calculated return of the financial asset ”j”:  

, ,
ˆˆ ˆ .j t j j M tR R                                                        (51) 

This equation can be also written as follows:  

, , , , ,
ˆˆ ˆ ˆ ˆ.j t j t j t j j M t j tR R R                                            (52) 

3.2.1.2.3. Interpretation of the coefficients 
i) The slope j  measures the relative volatility of the financial asset return “j”: 

°If j = 1, that’s mean that an increase in market return by 1%, increase the financial asset 
return by 1% too. 

°If j  > 1, that’s mean that the assets “j” led to amplify market movement; 
(and they called offensive assets). 

°If j  < 1, that’s mean that the assets “j” led to reduce market movement; 
(and they called defensive assets). 

ii) The intercept can be interpreted as a value of the financial asset return when the coefficient 
of the marker return is null. 
3.2.2. Statistical properties of data 

In this section, we will study the financial asset return “TUNSIESICAV”2 relative to the 
market return3. The data used are daily from January 3, 2003 until December 29, 2006, so we 
have 981observations. 

Where “X” indicates the market return ,M tR  and “Y” indicates the financial asset return ,j tR  
(TUNISIESICAV). 
3.2.3. Application of parameter instability tests on the model market 

According to the figure (Figure 15), we can see that the two series are stationary, but it is also 
possible that they represent breakpoints. 

 
 

                                                
2 Source: http://www.tunisievaleurs.com.tn or http://www.bloomberg.com/quote/TUNISIE:TU  
3 Source: http://www.bct.gov.tn/  
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          Figure 15. Evolution of the returns ,j tY R  and ,M tX R  

 
 

From the series “Y”, which indicates the return of the financial asset “j”, we can detect a 
breakpoint in the date January 12, 2003 (01/12/2003), and this result can be justified by the CUSUM 
and Chow tests indicated below. 
 
3.2.3.1. CUSUM of squares test 

The CUSUM of squares test statistic (Figure 16) comes out of the corridor and cut the margin 
of significance three times, so we conclude the existence of breakpoints supported by the Chow test 
indicated below. 

    Figure 16.  CUSUM of squares test on market model , , ,.j t j j M t j tR R      

 
 
3.2.3.2. Chow test 

According to the Equation 48, we can detect a breakpoint on the 
date 01/12/2003 (observation 212) checked by the Chow test (1960) (Table 7). 

P-value = 0.000002 is less than 10%, 5% and even 1%. That’s mean that we can consider 
this date as a breakpoint. 

Table 7. Chow test results 
Chow Breakpoint Test:     

01/12/2003               

(observation 212) 

  F-statistic 

  Log likelihood ratio 

13,17557 

26,10759 

Probability 

Probability 

0,000002 

0,000002 

3.2.3.3. Results interpretation 
When we estimate the Equation 48: , , ,.j t j j M t j tR R     at the total daily period 

daily from January 3, 2003 until December 29, 2006, we notice that F_stat value is very small (F-
stat = 0.022175).  
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This result leads us to say that there are no breakpoints during this period, but from 
figures (Figure 15) and (Figure 16), we can note that the two series present breakpoints. For that, we 
must divide the total period to correct the perturbation series and contradictory results found. The 
first sub-period (1 to 211), we note that F-stat = 5.848133 > χ ²(1) (Table 8), so there is a breakpoint.  
On the remainder in (212 to 981), we note that F_stat = 0.036692 < χ ²(1) (Table 8), so there is 
not a breakpoint. 

Table 8. Fisher statistic and R² of market model 
Period F-Statistic 

01/03/2003- 01/11/2003 (1 to 211) 5,848133 

01/12/2003- 12/29/2006 (212 to 981) 0,036692 

 
4. Conclusion 

Tests of parameter instability consist to detect the existence of breakpoints. In this case, we 
need to divide our total period into two or many sub-periods to improve the final results especially 
when the coefficients are not significant and the adjustment coefficient is low.  

The advantage of these tests is that they can be applied to any model, and because that we 
have choose to applied it on the two different type of models such as ARMA model (by using the 
series of oil price) and linear regression model (by using the market model).  

But our work can be developed by detection the existence of breakpoints in other series like 
insider trading (Olmo, Pilbeam and Pouliot, 2011) by changing the model and estimating for example 
structural changes in regression quantiles (Oka and Qu, 2011), etc.  
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