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ABSTRACT

Because credit losses can be substantial, managing credit risk is a focus area of risk measurement and management. It is important for financial institutions 
to select credit risk models that accurately forecast losses. The Basel Committee on Banking Supervision (BCBS) chose the closed-form single risk factor 
Vasicek model for regulatory capital calculations. In this article, its forecast accuracy is compared with empirical loss distributions using simulated probabilities 
of default and losses given default. The effect of altering probabilities of default on asset correlations was analysed and how this affects credit portfolio loss 
distributions. The robustness of the Vasicek model against five different portfolios with unique compositions was explored: results highlight two key findings. 
Firstly, the Vasicek model is a good approximation of credit losses for a portfolio that does not contain dominating loans (it is, after all, based on the assumption 
of large-scale homogeneity). Secondly, the Vasicek model is a good approximation for expected loss (ELs) but lacks accuracy when determining extreme 
unexpected losses (ULs). Finally, credit capital requirements as a function of two variables are presented which reveals novels ways of viewing these values.

Keywords: Credit risk, Vasicek Distribution, ASRF Model 
JEL Classifications: C3, C5, G1, M4

1. INTRODUCTION

Financial institutions are exposed to many different types of risks 
and without adequate risk management practices these risks could 
have catastrophic financial implications. The three main risks that 
a financial institution is exposed to are market risk, credit risk and 
operational risk (Gregory, 2012). Operational risk is the risk an 
entity faces as a result of daily activities such as loss due to errors 
by systems and individuals as well as damages to the entity. Market 
risk arises from losses due to poor investments, day-to-day price or 
interest rate movements, or by shocks to the market that alter the 
price of a financial asset. While the possibility of a party failing 
to make a contractual payment and resulting in the debt issuer not 
being paid back in full, is known as credit risk (Gregory, 2012).

Although risk comes in different forms, there is not always a 
precise separation between them. When operational risk occurs, 

depending on the severity of the losses incurred because of that 
risk, the entity may also experience market risk. If the stock is 
listed, the operational risk may affect the entity’s stock price, 
decreasing the value of their financial assets and thus resulting in 
the inability of the entity to pay their debt.

The variables which determine credit risk such as probability of 
default (PD), exposure at default (EAD) and loss given default 
(LGD) were explored as well as how credit rating agencies 
determine these variables for each obligor. Further, what an 
asymptotic single risk factor is and how correlation between 
obligors and the systematic risk factor are affected by default 
probabilities are unpacked. The focus is specifically on the 
distribution of credit losses within a portfolio and how the single 
risk factor Vasicek model is able to accurately approximate the 
empirical distribution. Vasicek (2002) provides a closed-form 
approximation for the distribution of credit losses by making use 
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of average input variables. The Vasicek framework is analysed 
to determine whether EL and UL are accurately approximated 
through the simulation of various portfolios. The robustness of 
the Vasicek framework is explored by investigating homogeneous 
portfolios, mixed portfolios and how varying probabilities of 
default affect the shape of the distribution. In addition, some of 
the shortcomings of the Vasicek framework were investigated 
and how the loss distribution is affected by the inclusion of a few 
large loans within the portfolio. Finally, the effects of varying risk 
factors have on the capital requirements determined by the Vasicek 
model are explored and presented.

The remainder of this article proceeds as follows: Section 2 
presents a contemporary literature review, and Section 3 sets 
out the data and methodology. Section 4 presents the results and 
Section 5 concludes.

2. LITERATURE REVIEW

Credit risk arises due to losses as a result of counterparties failing to 
fulfill contractual obligation payments (Kliĕstik and Cu´g, 2015). 
Although credit risk is traditionally defined as the risk of losses due 
to defaults on loans, credit risk may arise from multiple financial 
activities such as investments, trading on capital markets, equity 
securities, outstanding invoices, etc. (Kliĕstik and Cu´g, 2015). The 
challenge with credit risk modeling is that defaults are random and 
unexpected. Default events may result in large losses for financial 
institutions. Thus, these ELs need to be quantified so that financial 
institutions can adequately capitalise themselves. Credit risk is 
managed in multiple different ways by financial institutions. Before 
the existence of any models, risk experts would use subjective 
decisions or rating agencies to determine if a potential borrowers 
request would be accepted (Adamko et al., 2014).

The first mathematical models to model credit risk were introduced 
by Beaver (1966) and Altman (1968) which predicted an entities 
probability of failure by taking their financial reports into account. 
Beaver (1966) used a ratio to determine the probability that a 
financial institution would fail to pay their contractual obligations. 
Altman (1968) proposed a Z-score which is a linear combination 
of five joint weighted business ratios to determine the likelihood 
of an entity facing bankruptcy in the next 2 years. Z < 1.8 suggests 
a high probability of bankruptcy, while a Z > 3.0 would guarantee 
that the entity would not default. Altman et al. (1977) improved 
the Z-score model and renamed it the ZETA model which was 
70% accurate compared with the Z-score’s 36% (Harjans, 2018).

Structural models consider business failures to be endogenous 
events and are affected by capital structures. These models assume 
that credit risk events are a result of a change in the value of the 
company. These models assume that default occurs once the value 
of the company falls below a given threshold (Kliĕstik and Cu´g, 
2015). At that point in time, once the threshold is breached, the 
business is assumed to no longer have sufficient assets to cover all 
obligations. Merton (1974) introduced the first structural model 
which was based on the Black and Scholes (1973) option pricing 
framework. Merton (1974) derived a formulation for risky bonds 
with a flat risk-free term structure which could be used either 

evaluate the PD of a company or the credit spread. Vasicek (1984) 
expanded on Merton’s approach by finding a closed-form credit 
loss distribution for a short-term loan. Initially Vasicek’s model 
was based on a single risk factor but has since been expanded to 
include multiple risk factors by Pykhtin (2004).

Following structural models, reduced-form models were introduced 
which are based on the assumption that default is exogenous and 
use credit spreads as an input to determine probabilities of default 
(Kliĕstik and Cu´g, 2015). These models can be split into two 
categories: Intensity and credit migration models (Adamko et al., 
2014). Intensity models model the randomness of default as a time 
of jump in a one jump random process (Adamko et al., 2014). 
Credit migration models transition between credit ratings with the 
use of a Markov process. Reduced models do not require capital 
structure information and PD is modelled as a random Poisson 
process. Jarrow and Turnbull (1995) published the first reduced-
form credit model which incorporated credit rating information.

Hybrid models are a combination of structural models and reduced 
models. After the 1990’s, banks and consultants developed 
credit models whereby potential losses were determined using a 
predetermined confidence level (Kliĕstik and Cu´g, 2015). These 
types of models were motivated by Basel II and the growing 
importance of risk management. These models are specifically 
known as Value-at-Risk (VaR) models.

2.1. Credit Risk
Jorion (2011) defines credit risk as the risk of an economic 
loss from the failure of a counterparty to fulfill its contractual 
obligations. Credit risk is split into pre-settlement risk and 
settlement risk. Pre-settlement risk is the risk over the whole life 
of the obligation which arises from the counterparty’s failure to 
perform on an obligation such as making a contractual payment 
resulting in default (Gregory, 2012). Whereas settlement risk is 
short-term and is the risk carried from the time a payment is made 
till the time it is received. Settlement risk is caused by different 
time zones, exchange rates and more. Credit risk traditionally 
refers only to pre-settlement risk and includes default on loans, 
bond or derivative transactions.

2.1.1. Risk measures
The distribution of credit risk losses is influenced by the following 
variables (Jorion, 2011):
•	 PD: Is the probability of a counterparty defaulting over a 

specific period.
•	 Credit Exposure (CE) is the market value of the loan that the 

counterparty is exposed to, which is also known as EAD.
•	 Recovery rate (RR) is the percentage of the EAD that the entity 

can recover. This allows the entity to use the counterparty’s 
assets to decrease the outstanding credit.

•	 LGD is the percentage of the EAD that an entity loses from 
the obligor defaulting. This proportion is not recovered from 
assets and yields the final amount the entity loses due to credit 
risk. Thus, LGD = 1-RR.

Jorion (2011) defines default as a discrete state that a counterparty 
may be in, which takes the value one if the counterparty is in 
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default and the value zero if the counterparty is not in default. This 
process follows a Bernoulli distribution with a PD equivalent to 
the corresponding PD.

2.1.2. Portfolios and diversification
In modern banking a single loan is far riskier than a group (or 
portfolio) of loans. This is because a single loan has a single PD 
and when held alone holds considerable credit risk for a bank as 
no obligor has a PD of 0. This means that if an obligor has taken 
a large loan out they will either default or not, resulting in a large 
financial loss to the bank if default occurs. On the other hand, 
a portfolio is comprised of multiple loans and allows the bank 
to diversify their risk. Diversification ensures that a single loan 
does not account for all of the capital held by an entity in case 
of default since the risk of default is diversified across all loans 
(Jorion, 2011). Since different obligors have different PDs, this 
ensures that only in catastrophic circumstances will all obligors 
default causing a bank to go bankrupt.

2.1.3. Distributions
The distribution of credit loss for a portfolio of N loans from 
different i obligors is (Jorion, 2011),

CL D EAD LGDii

N
i i� � �

�� 1
 (1)

Where

B k PD
with probability p
with probability pi i

i

i
,� � �

�
�
�
�

1

0 1
 (2)

Where Bi is a Bernoulli distribution. EADi, LGDi are the EAD and 
LGD for obligor respectively.

Since all variables in (1) may be random and assuming they are 
independent the expected credit loss may be calculated using,

E CL E D E EAD E LGDii

N
i i� � � �� ��� �� ��� �� ���� 1

 (3)

Where E[Di]=pi

ECL or EL is the average loss that a bank may incur this risk 
is accounted for in the interest rate that the bank would offer a 
counterparty, which is known as the risk premia (Kiliç, 2007). 
Banks fund general provisions or loan loss reserves to absorb 
expected credit losses. Losses are not predictable and since ELs 
are an average, a second provision must be introduced for when 
there are spikes in losses.

ULs are the losses that occur over and above the EL due to the 
volatility in PD and LGD (BCBS, 2005). Since the timing of 
ULs is not known, risk prima may absorb a portion of the ULs. 
However, the market will not permit risk prima prices to cover 
the full ULs and thus a capital buffer is required, this is known as 
a bank’s capital requirement. To determine the amount of capital 
needed to act as a loss-absorbing function, a confidence interval 
must be selected. Since a bank cannot protect themselves 100% 
from losses, a given percentile of loss must be chosen. According to 

BCBS (2005), a confidence level of 99.9% is sufficient since losses 
that exceed the ULs are predicted to occur only every 1000 years 
because the PDs used are annual PDs. The high confidence level 
is chosen to counteract any under estimations by the PD, LDG, 
EAD and model uncertainties.

UL is the measure of the amount of deviation from the ELs which 
is a given percentile of loss less the EL (Jorion, 2011):

UL V CL E CL� � � � � �
0 999.

.  (4)

The losses above the given percentile are considered catastrophic 
losses. Since holding capital for such losses would not be optimal, 
insurance may be taken by the bank to protect against catastrophic 
losses. However, the event is extremely unlikely, and it would be 
extremely expensive to insure against such an event (BCBS, 2005).

2.1.4. Credit loss distribution
Over the years due to variations in losses, being expected and 
unexpected, banks have been able to model the distribution 
of losses. BCBS (2005) states that although a portfolio may 
be consistent over several years, the losses that are actually 
experienced by a bank vary and are dependent on the severity of 
events. Figure 1 shows the distribution of credit losses.

We see that for a given magnitude of losses, the probability 
of a certain number of losses for a single year is modeled as a 
probability density function (PDF). The area underneath the curve 
in Figure 1 is equivalent to 100% of the EAD. The shaded area 
would indicate a catastrophic/worst case scenario where there are 
almost 100% losses, and the bank may not have adequate capital 
to cover these losses. The PDF is skewed to the right, insinuating 
that there are more smaller losses than larger losses. The highest 
point of the graph is the mode pf the PDF and is the most frequent 
potential loss, while the average loss is represented by the vertical 
dotted line. The losses before and including the vertical dotted 
line in Figure 1 is the EL, while everything after the dotted line 
and before the shaded area is the UL. For a confidence interval 
of 99.9%, the EL plus the UL is known as Credit Value-at-Risk 
(VaR) (BCBS, 2005).

Banks have an incentive to minimise their capital requirements to 
free up economic resources for other investments, but they must 
still be able to meet their debt obligations or suffer insolvency. 
Thus, the balance between risk and reward of holding capital must 
be determined by an efficient model.

2.1.5. Effect of maturity adjustments
Banks hold credit portfolios with varying maturities. Long-term 
credit is riskier than short-term credit because of the possibility 
of a credit downgrade in that period or a loss of market value 
of loans. Capital requirements therefore increase with maturity. 
Maturity effects are negatively correlated with PDs: The lower 
the PD the higher the maturity effect on the loan and vice versa 
(BCBS, 2005). It is more likely that borrowers with lower PDs 
downgrade over time than if these borrower already had higher 
PDs. The maturity adjustment is thus a function of both maturity 
and time.
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The derivation of the BCBS maturity adjustment is achieved 
by applying a mark-to-market credit risk model like the KMV 
Portfolio Manager. The regression model that is implemented 
to determine the maturity adjustments allows for the following:
1. Adjustments are linear and increase as maturity (M) increases,
2. The adjustment slope with regards to maturity will decrease 

as the PD increases,
3. When the maturity is set to 1 year, the function yields the value 

1 and the resulting capital requirement is consistent with an 
Asymptotic Single Risk Factor model.

The capital requirement is simply multiplied by the maturity 
adjustment:

1 2 5

1 1 5

� �� � �
� �

M f
f
.

.
 (5)

where f PD� � � �� �0 11852 0 05478
2

. . ·log .

Since only the capital requirement is adjusted, the distribution does 
not change other than being scaled by the maturity adjustment 
factor. According to BCBS (2011), capital requirements for credit 
exposures have a minimum maturity requirement of 1 year.

2.2. Credit Ratings and LGD Scorecards
When determining the PD for a company, credit ratings are used. 
A credit rating is an “evaluation of creditworthiness” issued by 
a credit rating agency (Jorion, 2011). Moody’s Investor Service 
(2022) defines credit ratings as “Opinions of relative credit risk of 
fixed-income obligations with an original maturity of 1 year or more. 
These ratings address the possibility that a financial obligation will 
not be honoured as promised. Such ratings reflect both the likelihood 
of default and any financial loss suffered in the event of default.”

Each rating is based on a set of input rating variables that when 
coupled with a methodology produce a credit rating for a corporate 
entity. Credit ratings are depicted by a specific letter or series of 
letters. These letters carry their own PD (S&P Global, 2022; Fitch, 
2022; Moody’s Investor Service, 2022).

In addition, credit rating agencies are also able to determine the 
LGD of an entity. LGD scorecards use qualitative and quantitative 
factors to estimate the LGD at the exposure level for a corporate 
entity (S&P Global, 2021).

2.3. ASRF Framework
To understand an Asymptotic Single Risk Factor (ASRF) model, 
the following definitions are required:
•	 Portfolio invariance occurs when the capital required for a 

specific loan is only dependent on the risk of that loan and is 
independent of the portfolio it is added to.

•	 Idiosyncratic risk is risk that is unique to a single obligor such 
as losing their job, being in an accident, etc. while systematic 
or system-wide risk affects all borrowers to a degree such as 
the unemployment rate, inflation, GDP, etc.

BCBS (2005) states that a strong influence on the structure of 
a portfolio model is portfolio invariance. Gordy (2003) showed 
that only ASRF models are portfolio invariant. By the law of 
large numbers, ASRF models are derived from ordinary portfolio 
models. When given a fine-grained portfolio, there are a large 
amount of relatively small loans and large individual exposures 
are limited to a small portion of the portfolio (BCBS, 2005). 
Idiosyncratic risks associated with each obligor are diversified 
away and only systematic risk affecting multiple obligors has 
an overall effect on the portfolio losses (Gordy, 2003). ASRF 
models employ only one risk factor which represents the state of 
the economy. All obligors are linked to each other by this single 
factor (Lee et al., 2009).

The ASRF framework calculates the total expected and ULs by 
using the conditional EL for an exposure given an appropriately 
conservative value of the single systematic risk factor. The 
conditional EL is determined by transforming the average PDs 
into conditional PDs by making use of a supervisory mapping 
function (BCBS, 2004). Conditional PDs reflect the default rates 
associated with the specified systematic risk factor. The same 
systematic risk factor value is used on all the PDs of the loans in 
the portfolio. It is important to note that LGDs are not adjusted by 
the systematic risk factor to yield a conditional LGD. Banks are 
required to use LGDs that reflect economic-downturn conditions 
where losses are greater than under normal business conditions. 
According to BCBS (2004), the total economic resources under the 
ASRF model necessary to cover EL and UL for a given portfolio 
are equal to the total conditional EL.

2.4. Asset Correlation
Asset correlation determines the relationship between one 
borrower’s asset and another borrower’s asset. However, in 

Figure 1: Credit loss distribution (BCBS, 2005)
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the ASRF framework the asset correlation is the relationship 
that is exhibited by the asset value of the borrower and the 
general state of the economy or the single systematic risk 
factor. The asset correlation determines how the credit quality 
of an obligor changes with respect to the state of the economy 
(Lee et al., 2009).

2.4.1. Basel II asset correlation
The asset value of a borrower is driven by a factor model (Lee 
et al., 2009):

ri i i i� � �� � � �1 ,  (6)

Where ri is the asset return, λ is the single systematic risk factor, ρi 
is the R2 representing the portion of systematic risk and η represents 
the idiosyncratic risk factor of obligor i.

Two obligors are correlated with each other since they are both 
exposed to the same single systematic risk factor. Their degree 
of dependence on the single systematic risk factor may vary. The 
correlation between obligor i and obligor j is (Lee et al., 2009):

corr r ri j i j,� � � � �  (7)

According to the Advanced-Internal Ratings Based Approach 
(A-IRB) of BCBS (2001), the asset correlation parameter ρ is a 
decreasing function of PD:
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Parameters a, b and c are dependent on the type of borrower. For 
corporate borrowers and low asset correlation commercial real 
estate (CRE) a = 0.12, b = 0.24 and c = 50.

BCBS (2001) assumes that average asset correlation decreases 
with an increase in PD. This means that the higher the PD of an 
obligor, the lower the effect of the single systematic risk factor on 
the obligor shown in Figure 2.

The relationship between asset correlation and default probabilities 
is a decreasing function for all borrower types. Asset correlation 
reaches a plateau for each type of borrower as PD increases. 

Corporate borrowers have the highest asset correlation from all 
borrower types. For the purpose of this research the size of the 
firm as a factor will be disregarded since Lee et al. (2009) show 
that when firm size is accounted for, the negative relationship 
between asset correlation and PD no longer holds.

2.5. Vasicek Model
The Gaussian Asymptotic Single Risk Factor (ASRF) Model for 
portfolio credit losses was developed by Vasicek (1987) to produce 
an estimate for a credit loss distribution for a given portfolio where 
the correlation between obligors is driven by a single risk factor. 
The Vasicek single factor model for portfolio credit losses has been 
generalised to include stochastic EADs and LGDs (Kupiec, 2008). 
The model is able to adapt to accommodate any distribution and 
correlation assumptions for LGD and EAD to produce a closed-
form distribution (Vasicek, 2002).

Vasicek (1987) followed the approach of Merton (1974) and 
assumed that a loan defaults only if the value of the borrower assets 
(A) at the loan maturity (T), assumed to be 1 year, falls below the 
contractual value (C) of its obligations. Let Ai be the ith obligor’s 
assets, then the asset price dynamics are given by (Vasicek, 2002):

dA A dt A dWi i i i i i� �� σ  (9)

where βi and σi are the drift and volatility respectively and Wi is 
a Wiener process with

E dW dti� � �2  (10)

And

D
if obligor is in default with probability p

if obligor is not in di �
1

0 eefault with probability p1�
�
�
�

 (11)

The asset value at maturity, T, is then given by (Vasicek, 2002):

log logA T A T T TWi i i i i i� ��� �� � �� ��� � �� � �
1

2

2  (12)

so,

A T ei
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Figure 2: Relationship between asset correlation and PD for different borrower types
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Vasicek (2002) calculates the PD of the ith loan as the probability 
that the value of the borrower’s assets at maturity is less than the 
value of its contractual obligations at maturity:

PD P A T C T P W z N zi i i i i i� � � � � ��� �� � ��� �� � � �  (14)

Where

z
C A T T

Ti

i i i i

i
�

� � � � � � �log log � �

�

1

2

2

 (15)

represents the default threshold and N is the cumulative normal 
distribution function. Consider a portfolio consisting of K loans 
with the following characteristics (Vasicek, 2002):
1. Equal loan amounts in rands (EAD);
2. Equal PD;
3. Correlation between two companies is ρ;
4. Loans have the same maturity T.

We then have that the gross percentage loss of the portfolio before 
recoveries (L) is (Vasicek, 2002):

L
K

Dii

K
�

��1
1

 (16)

Where Di is

D iff W pi i i� � � ��1 1� � �  (17)

By the central limit theorem, the portfolio loss distribution 
converges to a normal distribution as the portfolio size increases, 
given that the events of default in the portfolio are independent 
(Vasicek, 2002). However, since the defaults are not independent, 
the conditions of the central limit theorem are not satisfied and 
L is not asymptotically normal. Vasicek (2002) shows that the 
distribution of losses converge to a limiting form.

Since the variables Wi in (9), are jointly standard normal with equal 
pair-wise correlation ρ, they can be represented as (Vasicek, 2002):

Wi i� � �� ��� 1  (18)

where, ��  represents the systematic risk and 1� ��i  

represents the idiosyncratic risk, with the condition that Λ and ηi 
are mutually independent standard normal variables. Thus, Λ is 
the single risk factor that affects all obligors and ηi is an obligor 
specific risk factor (Vasicek, 2002).

When is fixed, the conditional probability of loss on any one loan 
is (Vasicek, 2002):
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Where p(Λ) is the loan default probability under the given scenario 
(Λ) which allows one to scenario based testing on the economy by 
changing and determining the conditional PD based on the single 
risk factor (Vasicek, 2002). The portfolio loss, L, conditional on 
Λ converges, by the law of large numbers, to its expectation p(Λ) 
as K→∞. Therefore, the cumulative distribution function of loan 
losses on a very large portfolio is (Vasicek, 2002):

P L x N
N x N p
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� �1 1 1�
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 (20)

Portfolio loss is described by a two-parameter distribution with 
parameters P > 0 and P < 1 (Vasicek, 2002):
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which possesses the symmetry property

F x p F x p; , ; ,� �� � � � � �� �1 1 1  (22)

The density of the loss distribution is (Vasicek, 2002):
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with the mean of the distribution being E(L) = p and the 
α-percentile of L is:

L F p� � �� � �� �; ,1 1  (24)

The convergence of the closed-form to the portfolio loss 
distribution holds for a portfolio that contains a large amount of 
loans that are a similar size, without being dominated by several 
large loans (Vasicek, 2002). Thus, the limiting distribution is a 
good approximation for the portfolio loss under this assumption.

3. DATA AND METHODOLOGY

To analyse the accuracy of the closed form distribution suggested 
by Vasicek, the empirical distribution is first simulated using 
10 000 simulations with 1 000 loans of which all have a maturity 
of 1 year. This is done with the following variable assumptions:
1. The range of PD is [0.003%; 24.59%] (S&P Global, 2022);
2. The range of LGD is [0.28%;0.59%] (S&P Global, 2021);
3. The range of EAD is [100;1 000].
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Each loan is determined by randomly selecting a number within 
the given ranges of each variable assumption. In addition, each 
simulation is assigned a standard normal random variable which 
acts as the asymptotic single risk factor. Python makes use of the 
Mersenne Twister method to generate random numbers (Python, 
2022). A seed of two is used to produce comparable and consistent 
random variables across all portfolios each time the simulation 
is run. The correlation is determined for each loan using (8), 
suggested by BCBS (2006).

A critical threshold is determined for each loan by taking the 
inverse cumulative normal distribution function of the respective 
PD (Genest and Brie, 2013):

T pi i� � ��� 1  (25)

Where ϕ(•) is the cumulative normal distribution.

Each loan determines a jointly standard normal random variable 
by applying the effect of the ASRF as in (18) denoted by Wi. The 
default variable (Di) is defined as in (2). Since Vasicek’s framework 
is based on (Merton, 1974), obligor i defaults if their asset value, 
Wi in this case, goes below the critical threshold. Thus, (Genest 
and Brie, 2013)

D iff W pi i i� � � ��1 1� � �  (26)

If Di = 1, L = EADi⋅LGDi, otherwise losses =0. ELs are determined 
using (3) and ULs from (4).

PD and LGD are determined by averaging the randomly chosen 
variables in a single simulation with the EAD equivalent to the 
total EAD in the respective simulation. Thus, instead of having a 
range of values, there is a single average value for each variable. 
The correlation is determined using (8), with the only difference 
from the empirical being that instead of a range of correlations for 
each loan, a single correlation for an entire loan book simulation 
is used. The Vasicek distribution is determined by (23).

The Vasicek EL is:

EL PD LGDVasicek Vasicek Vasicek� �  (27)

while the UL is:

UL LGD
ZPD

Vasicek Vasicek
Vasicek

Vasicek

Vasicek

Vasic
� �

�
�

�1 1�
�
� eek

N 0 999.� � (28)

where N is the standard normal cumulative density distribution.

To have comparable distributions, the Vasicek distribution is scaled 
so that the highest point is equivalent to the highest point in the 
empirical distribution.

4. RESULTS AND ANALYSIS OF EMPIRICAL 
VERSUS VASICEK RISK MEASURES

The effects of altering a portfolio’s composition and how this 
affects the Vasicek distribution’s risk measures were analysed. The 

first portfolio comprised equal PDs, LGDs and EADs while the 
second comprised constant PDs with varying EADs and LGDs. 
The purpose of this portfolio is to investigate the effect three 
different PDs will have on the correlation and distribution of the 
credit loss portfolio. The third comprised a range of PDs, LGDs 
and EADs. The final portfolio was a mixed portfolio with the 
inclusion of three large loans, i.e., large EADs, which permit the 
exploration of the robustness of the Vasicek framework (Table 1).

The UL will also be assumed to be the capital requirement. The 
credit VaR (C-VaR) on all figures represents the 99.9-percentile 
of losses. The 99.9-percentile was selected as required by BCBS 
(2006).

4.1. Portfolio 1
We first analyse a homogeneous portfolio which consist of constant 
PDs, LGDs and EADs. The empirical and Vasicek distributions 
for this portfolio are depicted in Figure 3a.

In Figure 3a, losses are lognormally distributed, and the Vasicek 
distribution is a good fit for the empirical distribution. Both EL 
and UL computed by the Vasicek model are good approximations 
for the empirical risk measures. A comparison of the different risk 
measures is given in Table 2.

Portfolio 1 consists of 1 000 loans where each loan has an EAD of 
500, which results in a total EAD of 500. From Table 2, it is evident 
that the EL determined by the Vasicek model underestimates the 
empirically observed EL by 0.053%. Thus, the empirical EL is 
approximately 265 more than the Vasicek EL. The 99.9% C-VaR 
under the Vasicek model is also underestimated by 0.312% 
compared to the empirically observed 99.9% C-VaR, which 
translates to a difference of approximately 1 560. The UL computed 
by the Vasicek model once again underestimates the empirically 
observed UL by 0.259%, which is expected since the UL is defined 
as the 99.9% C-VaR less the EL.

When the portfolio is homogeneous, the Vasicek model is a good 
approximation, but it underestimates the empirical values which 
may result in a bank underestimating its capital requirements.

Table 1: Parameterisation for each loan within the various 
portfolios
Portfolio Type PD (%) LGD 

(%)
EAD

1 Homogeneous 12 40 500
2.1, 2.2, 
2.3

Constant PDs 10, 50, 90 40 500

3 Mixed (0.03; 24.59) (28;59) (100, 1 000)
4 Mixed with 3 

large loans
(0.03; 24.59) (28;59) (100,1 000)

+ 3·1 000 000

Table 2: Portfolio 1-risk measures as % total EAD 
(Empirical vs. Vasicek)
Risk measure Empirical Vasicek Empirical/Vasicek
EL 4.85 4.80 1.011
C-VaR 18.56 18.25 1.017
UL 13.71 13.45 1.019
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4.2. Portfolio 2
In portfolio 2 the effect of three different constant PDs on varying 
LGDs and EADs is investigated. The total EAD for portfolio 2.1, 
2.2 and 2.3 is 554 212. This portfolio provides insight on the effect 
PDs and correlations have on distributions of losses.

4.2.1. Portfolio 2.1
The first scenario sets the PD=10%. Since this PD is within 
the standard range, a major difference from previous results is 
not expected (Figure 3). Losses are lognormally distributed in 
Figure 3b and both the EL from the empirical distribution and 
the Vasicek model align well. While the 99.9% C-VaR is a close 
fit, the Vasicek C-VaR is slightly underestimated. There is little 
to no difference in the shape and results of the distributions when 
PD=10% compared to portfolio 1. This is attributed to the PD 
being very similar to the previous PD range (Table 3).

In Table 3, the Vasicek model overestimates the risk measures. 
Differences between the EL and C-VaR are 0.024% and 0.192% 

respectively. Even though the LGDs and the EADs are random, 
by fixing the PD, the risk measures obtained by the Vasicek model 
are still an accurate approximation.

4.2.2. Portfolio 2.2
The PD is now increased to 50% to analyse the effect it has 
on the distribution. From Figure 2, once the PD exceeds 15%, 
the correlation plateaus at 12%. Figure 3c illustrates the loss 
distribution for a constant PD of 50%.

The portfolio loss distribution is roughly normally distributed, 
the normality shape due to the shift in ELs. EL as a percentage of 
EAD shift by approximately 17.5% compared to the EL observed 
for portfolio 2.1. This is consistent with the assumption that a 
higher PD will result in greater losses. An increase in the C-VaR 
as a percentage of EAD of ≈ 20% is observed. Due to the higher 
PD, the EL as a percentage of total exposure is significantly higher 
compared to the previous portfolios analysed. Due to the high PD 
greater losses are observed than when PD ϵ [0.003%; 24.59%]. 

Figure 3: (a) Portfolio 1-Credit loss distribution, (b) Portfolio 2.1 (PD=10%)-Credit loss distribution, (c) Portfolio 2.2 (PD=50%)-Credit loss 
distribution, (d) Portfolio 2.3 (PD=90%)-Credit loss distribution, (e) Portfolio 3-Credit loss distribution, (f) Portfolio 4-Credit loss distribution

dc
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The correlation is dependent on the PD, which determines how 
much the single risk factor will affect the borrower defaulting. 
Since the PDs are high and consistent, they are all affected in the 
same way by the single risk factor with the only difference being 
the exposure amounts and the LGD (Table 4).

The Vasicek EL very slightly overestimates the empirically 
observed EL by 0.039%. In addition, the Vasicek C-VaR 
overestimates the empirically observed C-VaR by 0.19% and the 
Vasicek UL overestimates the empirically observed UL by 0.15%.

4.2.3. Portfolio 2.3
Finally, PDs are increased to 90%. In this case, the PD is almost 
guaranteed and thus even higher losses are expected. The 
distribution for this portfolio is illustrated in Figure 3d.

The distribution of losses in Figure 3d is highly skewed to the right. 
This is due to the high number of large losses expected when the 
portfolio is comprised of PDs that are 90%. Figure 3d illustrates 
that both the EL and the C-VaR under the empirical distribution 
and the Vasicek model are nearly identical, making the Vasicek 
distribution a good approximation. A summary of the risk measures 
for portfolio 2.3 is given in Table 5.

In Table 5, the EL is high compared to portfolios 2.1 and 2.2. The 
EL as a percentage of EAD increased by approximately 17.6% 
and 35.19% for portfolio 2.2 and 2.1 respectively. Further, the 
C-VaR as a percentage of EAD increased by approximately 5.58% 
and 25.84% for portfolio 2.2 and 2.1 respectively. The ratio of all 
the risk measures between the empirical and Vasicek are almost 
equivalent to one. This suggests that as PD are increased, the 
accuracy of the Vasicek model increases. As PDs increase, the 
difference between the EL and C-VaR decreases, which results a 
smaller UL. For high PDs, the EL accounts for a larger portion of 
the credit losses which results in the UL contributing to a smaller 
portion of the portfolio losses.

When PDs increase, the EL increases. Since the asset correlation 
is linked to PD, the higher the PD the lower the correlation 
resulting in the single risk factor having less of an effect on the 
obligor defaulting. Borrower default thresholds decrease as PD 
increases and correlation decreases. The lower threshold thus 
increases the probability of the borrower defaulting which results 
in a negatively skewed distribution when the portfolio comprises 
borrowers with high PDs. Due to the use of constant PDs, the 
portfolio is undiversified which increases the risk of greater losses. 
Thus, PDs play a key role in determining loss severity and directly 
affect correlations. The relationship between UL and PD can be 
thought of as follows: UL increases as PD increases until a certain 
point. Once the PD increases past a threshold, the UL decreases 
because for increasing PDs, a larger portion of portfolio losses are 
accounted for by the EL resulting in lower ULs.

4.3. Portfolio 3
In portfolio 3, the effect of a mixed portfolio with a total EAD of 
554 211 was analysed. This portfolio is the most realistic portfolio 
since each loan in a portfolio is unique or diversified based on its 
PD, LGD and EAD. The credit loss distribution for the empirical 
and Vasicek distribution for a “real world” scenario is illustrated 
in Figure 3e.

The Vasicek distribution provides a good fit for the empirical 
distribution. Larger deviations between the empirically observed 
C-VaR and the Vasicek C-VaR which is expected since this 
portfolio consists of random PDs, EADs and LGDs. The risk 
measures for portfolio 3 are summarised in Table 6.

The Vasicek model underestimates the EL by 0.040% compared to 
the empirically observed EL, which translates to an underestimation 
of approximately 222. When all variables are random, the Vasicek 
EL is still a good approximation to the empirically observed EL 
and is more accurate compared to the homogeneous portfolio 
(portfolio 1). In contrast, the Vasicek C-VaR is overestimated by 
1.74% compared to the empirically observed C-VaR, which results 
in the Vasicek UL being overestimated by approximately 9 900. 
Thus, when PD, EAD and LGD are all random, the Vasicek model 
does not approximate the UL well.

4.4. Portfolio 4
The final portfolio has three dominating loans resulting in a total 
EAD of 3 552. This portfolio is introduced to illustrate that the 
convergence of the portfolio loss distribution does not hold when 
dominating loans are included in the portfolio as stated by Vasicek 
(1991). In Figure 3f.

The loan losses for the empirical distribution are scattered and 
concentrated at certain loss levels, which no longer conforms 
to the usual shape observed in previous portfolios. The Vasicek 
distribution (Figure 3f) does not fit the empirical distribution 
when a few dominating loans are included. Vasicek C-VaR and 
the empirically observed C-VaR differ significantly (Table 7).

The Vasicek EL is underestimated by 0.53% when compared to 
the empirically observed EL which is equivalent to ≈ 18 600. The 
biggest drawback of the Vasicek model in a portfolio with a few 

Table 4: Portfolio 2.2 (PD=50%)-Risk measures as % total 
EAD (Empirical vs. Vasicek)
Risk measure Empirical Vasicek Empirical/Vasicek
EL 21.95 21.97 0.998
C-VaR 38.20 38.39 0.995
UL 16.25 16.41 0.991

Table 3: Portfolio 2.1 (PD=10%)-Risk measures as % total 
EAD (Empirical vs. Vasicek)
Risk measure Empirical Vasicek Empirical/Vasicek
EL 4.37 4.40 0.994
C-VaR 17.94 18.14 0.989
UL 13.57 13.74 0.988

Table 5: Portfolio 2.3 (PD=90%) Risk measures % total 
EAD (Empirical vs. Vasicek)
Risk measure Empirical Vasicek Empirical/Vasicek
EL 39.57 39.58 0.999
C-VaR 43.78 43.715 1.002
UL 4.21 4.13 1.020
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dominating loans, is the estimation of the C-VaR. A comparison 
of the Vasicek C-VaR and the empirically observed C-VaR shows 
that the Vasicek model severely underestimates the C-VaR by 
17.83%, nearly 20% of the total portfolio EAD. The ratio of the 
empirically observed UL is nearly 2 times larger than the Vasicek 
UL. The Vasicek UL underestimates the empirically observed UL 
by 17.30%, which translates to approximately 615 000. Financial 
institutions must ensure that there are no dominating loans within 
a portfolio when using the Vasicek model to approximate credit 
losses.

4.5. Impact of Variables on Capital Ratio Determined 
by the Vasicek Model
In this section the impact of two variables on capital requirements 
is explored, namely the effect of PD and LGD, PD and maturity 
as well as LGD and maturity on credit risk capital requirements.

Table 8 shows the ranges for the risk variables as well as the 
constant value when investigating the effect of the other variables.

4.5.1. Capital requirement to a change in PD and LGD
The change in the capital requirement to a change in PD and LGD 
is given in Figure 4a.

Figure 4a shows that as LGD increases the capital requirement 
increases. The capital requirement increases as PD increases until 
≈30%. Beyond a PD of 30% the capital requirement decreases 
with PD. For PD < 30% and for an increasing LGD, the capital 
requirement increases while for a PD increasing above 30% and an 
increasing LGD the capital requirement decreases. For example, 
using a PD of 10% and an LGD of 40% the capital requirement 

is lower than when the PD is 20% and LGD is 60%. Capital 
requirements reach a peak when PD=30% and LGD=100%. 
However, when PD=60% and LGD=100% the capital requirement 
is higher than when PD=80%.

LGD has an almost proportional relationship with the capital 
requirement whereas PDs lower than 30% have a steep increasing 
relationship and thereafter have a decreasing relationship that 
declines at a slower rate than when increasing. This relationship 
between PD and LGD is supported by Figure 4a which is 

Table 8: Ranges and constant value for risk variables
Risk variable Range Value
LGD [0.00001;1] 40%
PD [0.00001;1] 15%
M [1;20] 1 year

Table 6: Portfolio 3 - Risk measures as a percentage of 
total EAD (Empirical vs. Vasicek)
Risk measure Empirical Vasicek Empirical/Vasicek
EL 5.61 5.57 1.007
C-VaR 18.87 20.62 0.916
UL 13.26 15.05 0.882

Table 7: Portfolio 4-Risk measures as a percentage of total 
EAD (Empirical vs. Vasicek)
Risk measure Empirical Vasicek Empirical/Vasicek
EL 8.26 7.73 1.068
C-VaR 43.39 25.56 1.698
UL 35.13 17.82 1.971

Figure 4: (a) Capital requirement to a change in PD and LGD, (b) capital requirement to a change in PD and M (c) capital requirement to a change 
in LGD and M

c

ba
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skewed to the right with lower PDs and an increasing slope 
for a fixed PD.

4.5.2. Capital requirement to a change in PD and M (maturity)
The change in the capital requirement to a change in PD and M is 
given in Figure 4b. PD maintains the same trend as in Figure 4a 
and b. The capital requirement increases sharply as PD increases 
to 30% then decreases gradually as the PD decreases. The shape in 
Figure 4a remains constant for PD against the capital requirement 
and multiplied by some factor as M increases. For example, when 
M = 1 year and PD = 20% the capital requirement is lower than 
the capital requirement when the PD = 20% and M = 15 years.

Figure 4 supports BCBS (2005) stating that the distribution of the 
PD and K relationship does not change other than being scaled by 
the maturity adjustment factor. Thus, it is evident that since the 
capital requirement is simply multiplied by the maturity factor, a 
maturity above 5 years would be futile. The maturity factor may 
be too high or even too low for high maturities and would not be 
accurate as multiple factors influencing the capital requirement 
may change in that time.

4.5.3. Capital requirement to a change in LGD and M 
(maturity)
The change in the capital requirement to a change in LGD and M 
is given in Figure 4c. As LGD increases and M increases so too 
does the capital requirement. For example, for an LGD of 20% and 
a maturity of 1 year, the capital requirement would be lower than 
for an LGD of 30% and a maturity of 5 years. As LGD increases, 
the capital requirement increases at a steeper rate as maturity 
increases when compared to lower LGDs.

LGD has a proportional relationship with the capital requirement and 
thus as LGD increases, more capital is required in case of counter-
party default. When including a maturity adjustment this relationship 
is multiplied by the maturity factor which only multiplies the 
capital requirement by this factor. Since the maturity adjustment 
is only a function of maturity and PD, the maturity factor is only 
altered slightly by an increasing maturity since PD is kept constant. 
Figure 4c further supports that the LGD and K relationship is not 
altered but the distribution is merely scaled by the maturity factor.

To test the robustness of the Vasicek model, a portfolio with a few 
dominating loans was considered. Results indicate that the Vasicek 
model does not provide a good fit for the empirical distribution 
when dominating loans are included in the portfolio. This confirms 
the conditions of the loan portfolio that are required for the closed-
form approximation to converge to the empirical distribution, as 
suggested by Vasicek (2002). These dominating loans influence 
the risk measures significantly and result in the Vasicek model 
underestimating extreme losses. Thus, when the assumptions of 
the Vasicek model are followed, the model serves to be an accurate 
approximation of the empirical distribution.

5. CONCLUSION

Credit risk has become increasingly more important in recent 
years and poses a big risk to financial institutions if not managed 

adequately. There are several different models available to estimate 
credit losses within a portfolio. One of these models is the Vasicek 
(2002) model which provides a closed-form approximation for 
the distribution of credit losses by making use of average input 
variables. Vasicek’s model (2002) was used to estimate the credit 
loss distribution of a portfolio and the robustness of the model in 
comparison to the empirical distribution.

Results indicate that the asymptotic single risk factor Vasicek 
model generally provides a good fit for the empirical distribution, 
specifically when considering a homogeneous portfolio. As 
random PDs, EADs and LGDs are introduced within the portfolio, 
the accuracy of the Vasicek distribution decreases. Results indicate 
that the Vasicek model is highly dependent on the PD. The lower 
the PD, the greater the correlation, resulting in a greater effect 
from the single risk factor. As PD increases, the EL accounts for 
more of the overall portfolio losses than the UL. This increases 
the accuracy of Vasicek’s approximation since the EL is predicted 
with a higher degree of accuracy compared to the UL, since the 
Vasicek distribution makes use of the average PD and LGD across 
the portfolio.
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Adamko, P., Kliĕstik, T., Birtus, M. (2014), History of credit risk models. 
Advances in Education Research, 61, 148-153.

Altman, E.I. (1968), Financial ratios, discriminant analysis and the 
prediction of corporate bankruptcy. The Journal of Finance, 23(4), 
589-609.

Altman, E.I., Haldeman, R.G., Narayanan, P. (1977), ZetaManalysis a 
new model to identify bankruptcy risk of corporations. Journal of 
Banking and Finance, 1(1), 29-54.

BCBS. (2001), The Internal Ratings-Based Approach. Available from: 
https://bis.org/publ/bcbsca05.pdf

BCBS. (2004), International Convergence of Capital Measurement and 
Capital Standards. Available from: https://bis.org/publ/bcbs107.pdf

BCBS. (2005), An Explanatory Note on the Basel II IRB Risk Weight 
Functions. Available from: https://bis.org/bcbs/irbriskweight.pdf

BCBS. (2006), International Convergence of Capital Measurement and 
Capital Standards (Revised Framework). Available from: https://bis.
org/publ/bcbs128.pdf

BCBS. (2011), Treatment of Trade Finance Under the Basel Capital 
Framework. Available from: https://bis.org/publ/bcbs205.pdf

Beaver, W.H. (1966), Financial ratios as predictors of failure. Journal of 
Accounting Research, 4(1), 71-111.

Black, F., Scholes, M. (1973), The pricing of options and corporate 
liabilities. The Journal of Political Economy, 81(3), 637-654.

Fitch. (2022), Issuer Default Ratings. Available from: https://your.fitch.
group/rating-definitions.html [Last accessed on 2022 Sep 01].

Genest, B., Brie, L. (2013), Basel II IRB risk weight functions: 
Demonstration & analysis. Available from: https://papers.ssrn.
com/sol3/Delivery.cfm/SSRN_ID2578936_code2371644.pdf [Last 
accessed on 2023 Dec 06].

Gordy, M.B. (2003), A risk-factor model foundation for ratings-based bank 
capital rules. Journal of Financial Intermediation, 12(3), 199-232.

Gregory, J. (2012), Counterparty Credit Risk and Credit Value Adjustment: 
A Continuing Challenge for Global Financial Markets. 2nd ed. United 
States: Wiley.

Harjans, L. (2018), A Comparison of Altman’s z-Score and the j-model in 
Assessing Corporate Failure: Evidence from the USA. PhD Thesis, 
University of Twente. Available from: https://essay.utwente.nl/75423



Milonas and Vuuren: Simulating Credit Loss Distributions: Empirical Versus the Vasicek Model

International Journal of Economics and Financial Issues | Vol 14 • Issue 2 • 202488

Jarrow, R.A., Turnbull, S.M. (1995), Pricing derivatives on financial 
securities subject to credit risk. The Journal of Finance, 50(1), 53-85.

Jorion, P. (2011), Financial Risk Manager Handbook. 6th ed. United 
States: Wiley.

Kiliç, E. (2007), Simulation of Credit Risk and Modeling pd/lgd Linkage, 
PhD Thesis, Istanbul Bilgi U¨ niversitesi.
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