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ABSTRACT

Amid the energy reform efforts by the Taiwan government, residential energy demand continues to face an escalating trend every year. This indicates 
the phenomenon of the energy efficiency gap. One of the factors that control the energy efficiency gap is the rebound effect. The rebound effect is related 
to the increase in energy consumption through efforts to reduce the use of energy itself. This can be due to the low cost of usage that causes a person 
to be encouraged to use more energy. This study aims to estimate the magnitude of the direct rebound effect of household electricity consumption in 
Taiwan using monthly time series data from January 1998 to December 2018 and to implement the artificial neural network (ANN) as an alternative 
approach to measure the direct rebound effect. Based on the simulation results, the direct rebound effect magnitude for household electricity consumption 
in Taiwan is in the range of 11.17% to 21.95%. GDP growth is the most important input in the model. Additionally, population growth and climate 
change are also critical factors and have significant implications in the model.

Keywords: Energy Efficiency Gap, Direct Rebound Effect, Artificial Neural Network 
JEL Classifications: Q43, C63, E7

1. INTRODUCTION

In recent years Taiwan’s economic growth has been faced with 
increasing uncertainty, especially related to the condition of the 
manufacturing industry caused by soaring energy prices because 
of the limited availability of natural energy in Taiwan, which has 
led to high energy import figures (Hong and Tsai, 2018). If we look 
at the data over the past few years, total domestic consumption 
has a rapid increase from 72,186 103KLOE in 2003 to 87,318 
103KLOE in 2018 or an increase of 21%. This increase can also 
be seen by the sector, where energy consumption for transportation 
and residential continues to increases. More clearly can be seen 
in Figure 1.

Figure 1 shows the increasing trend of energy demand for the 
residential and transportation sectors from 2003 to 2018. If we attract 
a linear line between the two curves then we will find something 
interesting, energy demand for households grows faster each year 
compared to energy demand for transportation, causing a crossing 
between the two linear lines in 2013. On one hand, in those years, the 
Taiwanese government approved a mega smart grid system project, 
one of which aims to control people’s consumption of energy use, 
including electricity consumption. Regardless, as the picture above 
shows, there is an indication of an energy-efficiency gap in Taiwan.

The discussion of the energy-efficiency gap has broadly evolved 
since the Hausman literature (1979) about consumer failures in 
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investing income for energy efficiency. Moving forward, Greene 
(2011) believes that uncertainty around the net value of future 
savings and loss aversion of consumers causing under-investment 
of consumers. Besides, Allcott and Greenstone (2012) assessed 
that imperfect information and inattention makes under-investment 
in energy efficiency. Gillingham and Palmer (2014) have a more 
interesting discussion, which is about the size of the gap that has 
not been solved, but several factors can force its size, one of the 
factors is the rebound effect.

According to Gillingham and Palmer (2014), the rebound effect 
frequently gets less attention as part of the factors that affect the 
energy-efficiency gap. That is because the technical approach 
assumes energy service demand is constant before and after the 
efficiency of investment. However, consumers are using more 
energy services because of lower usage costs, this phenomenon 
known as the energy rebound effect. From the mechanism of 
occurrence, the rebound effect is divided into direct rebound 
effects, indirect rebound effects and economy-wide (Greening 
et al., 2000; Wang et al., 2018). The difference lies in the 
effects of the rebound effect. The direct rebound effect is when 
the price changes that occur because of energy efficiency will 
encourage energy consumption itself, which can directly cause 
a direct rebound in energy consumption. Then, the mechanism 
in the indirect rebound will affect the increase of real income of 
consumers so it will encourage other energy services consumption 
if we assume the price of goods and services has not changed 
(Sorrell et al., 2009; Wang et al., 2018). The direct rebound effect 
is the most familiar, and broadly studied compared to the others 
(Sorrell, 2014; Sorrell et al., 2009).

Furthermore, the results of research conducted by many researchers 
show the magnitude of the rebound effect varies depending on the 
location of the study and the estimation technique used. In the 

US, Greene et al. (1999) with econometric estimates found a 
23% rebound effect for household vehicle travel, then Bentzen 
(2004) using time series data from the US manufacturing sector 
and applying dynamic ordinary least square (DOLS), found the 
magnitude of the rebound effect around 24%. Small and Dender 
(2005) with aggregate cross-sectional time-series data from 1966 
to 2001 on all US states, finding a direct rebound effect of 5.3% 
for short runs and 26% for long runs. Another study conducted 
by Thomas and Azevedo (2013) with their input-output approach 
simulates direct and indirect rebound effects, they find an indirect 
rebound of 5-15% for primary energy and CO2 emission, assuming 
a rebound effect of 10%.

In addition to the US, studies in several EU countries also show 
different results for each country. Berkhout et al.(2000) found 
the value of rebound effects in the Netherlands is probably 
small, ranging between 0% and 15%. Another study, using 
panel data, Frondel et al. (2008) estimated the rebound effect in 
Germany where the results show a range ranging from 57% to 
67%. De Borger et al. (2016) estimated the rebound effect on car 
transportation in Denmark by using micro-data, the result they 
found a rebound effect ranging from 7.5% to 10%. Besides studies 
conducted in each EU country, Freire-González (2017) conducted 
studies in EU-27 countries, he used a combination of econometric 
estimation methods and environmental extended input-output, by 
weighting individual estimates by GDP, and the average value for 
the overall EU-27 economy has been found between 73.62% and 
81.16%. The results of a comprehensive review of Sorrell et al. 
(2009) concluded that for households in OECD countries, the 
direct rebound effect should be <30%.

Further, the results of studies in several Asian countries such as 
China showed a fairly high estimated rebound effect. A study 
conducted by Zhang and Peng (2016), using the panel threshold 

Figure 1: Energy demand for residential and transportation sector
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model, they found the magnitude of the rebound effect of China’s 
residential electricity consumption is 71.53% on average. The 
amount is slightly lower with the national average energy 
efficiency rebound effect of 74.18% (Li and Yonglei, 2012). The 
study result from Wang et al. (2018) shows the magnitude of the 
rebound effect is very high, ranging from 6.56% to 990.54%. Based 
on the spatial spillover effect, using panel data from Chinas’ urban 
population electricity consumption, found a direct rebound effect 
of 37% (Han et al., 2019). Besides in China, research conducted 
by Alvi et al. (2018) for residential electricity consumption in 
Pakistan shows the amount of direct rebound effect is 69.5% for 
the long run and 42.9% for the short run.

In the case of Taiwan, the results of a study conducted by Wu 
et al. (2016), by applying supply-driven input-output to find the 
magnitude rebound effect in the industrial sector, the results of 
their study show the amount of total rebound effect is no more 
from 10% for the industrial sector. In addition, for the household 
sector, a study conducted by Su (2019) conducted a survey of 7677 
households, showing a total rebound effect of 33%. However, 
the two studies conducted in Taiwan did not clearly distinguish 
whether the amount came from direct or indirect rebound effects. 
Globally, a study from Wei and Liu (2017) using the CGE model 
shows that the estimated global rebound effect is very high at 70%.

The energy rebound effect has been studied extensively using 
various approaches, the most approach is to use econometrics 
with OLS, FGLS, 2SLS, 3SLS estimation techniques, fixed 
effects, random effects, and error correction models (Sorrell et al., 
2009). In its advancement, studies of the rebound effect applying 
quasi-experimental, Computable General Equilibrium (CGE) 
models, input-output models, LMDI decomposition models, Cobb-
Douglass function models have been used to analyze the energy 
rebound effect. However, not several estimates used are far from 
ideal. It can be seen from the many estimation results that have 
very high or even very low output, causing a bias in the size of the 
rebound effect and overestimated (Sorrell et al., 2009). Therefore, 
this study wants to reduce the bias obtained from the estimation 
results using the Artificial Neural Network or ANN approach.

ANN is a mathematical model that consists of an interconnected 
group of neurons and processes information using a computing-
based connection. ANN changes the structure based on internal 
and external information that enters the network during the 
learning process. The advantage of using ANN is that they can 
represent both linear and non-linear relationships and learning 
the data flow directly (Haykin, 1998; Tsakiri et al., 2018). ANN 
has become popularly used for prediction and modeling for 
various cases (Rajurkar et al., 2002; Şahin et al., 2013; Tsakiri 
et al., 2018). Moreover, ANN has been used to be an alternative 
to several statistical methods and empirical methods to evaluate 
different physical phenomena. When compared with multiple 
linear regression (MLR), ANN presents a computational path 
to measure a non-linear relationship between several inputs 
and one or more outputs. ANN has been applied for modeling, 
identifying, and predicting complex systems (Li and Jiang, 2010). 
Comparing estimates using regression and ANN has shown that the 
performance value of the ANN model is better than the regression 

model. Besides that, the mean absolute percentage error (MAPE) 
value of the ANN model is lower than the regression model, with 
the R values of ANN also higher (Kumar et al., 2015).

Furthermore, from the explanation of the advantages possessed 
by the neural network, it is felicitous if ANN is an alternative to 
estimate the rebound effect. Besides, the results of the study of 
the rebound effect using ANN as far as the researchers know has 
never been done. ANN accurately matches the non-linear variable 
which is the advantage compared to multivariate linear analysis 
based on linear variables (Goyal and Goyal, 2012; Stangierski et 
al., 2019). Therefore, this study measures the magnitude of the 
direct rebound effect of household electricity consumption using 
an artificial neural network approach and its implications for 
energy policy in Taiwan.

This study is organized as follows; section 2 presents the literature 
review to more understand the direct rebound effect and artificial 
neural network, section 3 describes the data used and simulation of 
the model, section 4 discussing the empirical results, and section 
5 concludes and gives some implications.

2. LITERATURE REVIEW

2.1. Direct Rebound Effect
In general, the direct rebound effect is the tendency of consumers 
to use more energy because of lower usage costs. As Sorrell et 
al. (2009), an increase in energy efficiency results in lower prices 
for energy services and then drives consumption and services to 
increase. For example, consumers might choose a space heater 
that is energy efficient so that it can be used to heat the room for 
a longer period of time because of the costs incurred for cheaper 
electricity consumption.

Formally, to estimate the rebound effect, elasticity is the path most 
frequently used. Quoted from Freire-González (2017) and Sorrell 
et al. (2009) direct rebound effect can be explained as follows:

 � �� �x SE E� � � � � �1 (1)

Where ϑα(xE) is the efficiency elasticity for energy demand and 
ϑα(SE) is the energy efficiency elasticity of an energy service 
demand. When the energy efficiency elasticity of the demand 
for useful work for an energy service is equal to zero, there is no 
direct rebound effect (Freire-González, 2017). This definition is 
the most natural of the direct rebound effect (Berkhout et al., 2000; 
Frondel and Vance, 2013) as described previously, the response to 
service demand for changes in energy efficiency is explained by the 
elasticity of service demand with respect to efficiency. However, 
according to Sorrell et al. (2009) due to the likely endogeneity 
of energy efficiency, Frondel and Vance (2013) argue that the 
elaboration will be difficult to calculate.

Additionally, the rebound effect is not only measured by the 
elasticity of energy efficiency but can also be measured by 
the price elasticity of energy demand (Berkhout et al., 2000; 
Freire-González, 2017; Saunders, 2013; Sorrell, 2014; Sorrell 
et al., 2009):
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 � �� x xE PE E� � � � � � �1 (2)

Where ϑPE (xE) is the price elasticity of energy demand. This model 
assumes that the response to decreasing energy prices is consistent 
with a response to energy efficiency.

However, using these assumptions does not completely describe 
the actual situation because energy prices do not always decline, 
and even always experience fluctuations continuously. To capture 
the phenomenon of price fluctuations, we conducted price 
decomposition using an approach such as that carried out by 
(Dargay and Gately, 1995, 1997). They decompose the price of Pt 
into three series of components, where each of them is monotonic: 
maximum historical price Pmax,t, cumulating series of price cuts 
Pcut,t, and the cumulating series of price recoveries Prec,t:

 P P P Pt max t cut t rec t� � �, , ,  (3)

 P P P P Pmax t t, ( , , ,..., )≡ max 0 1 2  (4)

 P P P P Pcut t
i

t

max i i max i i, , ,min( , ( ) ( ))� � � �
�

� ��
0

1 10  (5)

 P P P P Prec t
i

t

max i i max i i, , ,max( , ( ) ( ))� � � �
�

� ��
0

1 10  (6)

Wherefrom the three decomposition series, the negative value 
shown by the price cut Pcut,t indicates the existence of a rebound 
effect as well as showing the magnitude of the rebound effect itself 
(Ai et al., 2020; Alvi et al., 2018; Bentzen, 2004; Frondel and 
Vance, 2013; Han et al., 2019). For the notes, the sigma notation 
above will be changed to pi notation (product notation) when 
measuring direct rebound effect using the LRM approach with 
the logarithmic transformation of variables.

2.2. Artificial Neural Network
The basic inspiration of an artificial neural network or ANN is a 
highly complex human brain, capable of processing both linear and 
non-linear data (Haykin, 1998). ANN is a system that processes 
information just as it does in the human brain and represents 
general mathematics of human reasoning based on the assumptions 
that include: (1) Information is processed in neurons; (2) Signals 
are connected between neurons through established links; (3) Each 
connection between neurons relates to a weight that is the signal 
transmitted between neurons multiplied by the weights; (4) each 
neuron in the network implements the activation function for input 
so that it can regulate its output (Chiroma et al., 2017).

ANN is a method for classifying time series data that can provide 
solutions to non-linear problems using their inner-parallel 
architecture (Stangierski et al., 2019; Tsakiri et al., 2018). The 
application of ANN can be the right solution, but the problem 
is the network architecture and the selection of appropriate 
training methods. Normally, multilayer networks are used with 
the Feed Forward Neural Networks (FFNN) model. In FFNN, 
neurons are arranged in layers and signals flow from the input 
to the first layer, then to the second layer (Caraka et al., 2019; 
Caraka et al., 2019).

ANN comprises at least input, hidden layer, and output. The 
number of input layer nodes depends on the number of tested 
variables. The number of hidden layers and neurons counts on the 
complexity of the command and the amount of training data. Apart 
from the input-layer neurons that externally receive the input, 
each neuron in the hidden and output layer gets information from 
many other neurons. The weights determine the strength of the 
interconnection between two neurons. Each input of neurons in the 
hidden and the output layers are multiplied by the weight, input 
from other neurons added and the addition is an application of the 
activation function. The results of the calculations serve as input 
to other neurons and the optimum value of the weight is obtained 
through training (Chiroma et al., 2017; Malik and Nasereddin, 
2006). For more details can be seen in Figure 2.

This study using a multilayer perceptron, also known as MLP, a 
network consisting of a set of sensor units (source nodes), where 
there are input layers, one or more hidden layers of computation 
nodes, and an output layer. This study also adopts MLP trained 
with back-propagation algorithm (BPA), the most commonly 
used neural network method (Pradhan and Lee, 2010). The back-
propagation training algorithm is usually used to minimize the 
following cost function associated with weights and neurons 
thresholds (Fayed et al., 2019). According to Haykin (1998) and 
Tsakiri et al. (2018), MLP training identifies the weight, ωji for 
each layer based on network learning.

Figure 2 shows the MLP structure with inputs shown as 
x x xn1 2, , , ,…  weights with � j j jnx x1 2, , , ,�  b is the bias and φ is 

the transfer function, ʋ is the weighted sum of the inputs. Next, 
the neuron j being fed by a set of signal functions produced by a 
layer of neurons on its left. The induced local field vj is produced 
at the input of the activation or transfer function associated with 
neurons j (Haykin, 1998).

 � �jn
n

m

jn nx�
�
�

1

 (7)

Where m is the total number of inputs (except bias) used by neurons 
j. the synaptic weight wj equals with bias b applied to neuron j. As 
explained earlier, this study uses back-propagation to improve the 
weights of each neuron while minimizing errors (Haykin, 1998). 
Errors can be explained using the following equation:

 e d yjn jn jn� �  (9)

Where j is the output node, d is the target value, and y is the MLP 
produced value. The error in the output node j is given by the 
following equation:

 �n
j

jne� �12
2  (10)

To minimize the error of each weight, we applying gradient 
descent:

 �� �
�

jn
n

jn
jnv
y� �

�
�

 (11)
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In the equation above, η is the learning rate, yj is the output of 
the previous neuron.

3. DATA AND SIMULATION

3.1. The Data
This study using monthly time series data, from January 1998 
to December 2018, so that we obtain 252 data series. Data were 
acquired from the Bureau of Energy, the Ministry of Economic 
Affairs of Taiwan, the National Statistics Bureau of Taiwan, and 
the Central Weather Bureau of Taiwan.

According to Pradhan and Lee (2010), the ANN approach has 
many benefits compared to other statistical methods. ANN is not 
contingent on a statistical distribution of the data and also does 
not require specific statistical variables. We adopt electricity 
consumption data as a response variable to 6 input data (variable 
input), where electricity consumption is the amount of kWh 
consumed by households every month. Furthermore, to determine 
the existence and magnitude of the rebound effect, perceived 
from the Pcut,t value as presented in formula number 5 (Ai et al., 
2020; Alvi et al., 2018; Bentzen, 2004; Han et al., 2019). We can 
examine the decomposition results from formulas number 4 to 6 
in Figures 3.

The following input is the degree days (DD). The degree days 
is a simple description of the temperature conditions that endure 
outdoors. DD is regularly used to estimate the impact of outdoor 
temperatures on indoor energy use. To measure DD, we use the 
formula:

 HDD T T M
i

n

base n� �� �
�
�

1

 (12)

 CDD T T M
i

n

n base� �� �
�
�

1
 (13)

Where HDD is heating degree days and CDD is cooling degree 
days. Tbase refers to the basic temperature of the degree day. Tn is 
the average daily temperature, where it is a sum of the maximum 
and the minimum daily temperatures divided by two. Thus, the 
DD value denotes the sum of the HDD and CDD. The next input 
is the population (Pop). In our study, it is the number of Taiwan 
population growth every month from January 1998 to December 
2018. The last input is Taiwan economic growth which is Gross 
Domestic Product (GDP) growth (Table 1).

3.2. Simulation
When developing a neural network, data construction is first split 
into two stages, first is data pre-processing which is to normalize 
data with min-max normalization into the specific range of 0.0 to 
1.0. Second, dividing the data into two parts, particularly training 
data and testing data. This section proposes to test the performance 
and recognize the accuracy of the network using training data.

First, data normalization, the reason for producing data 
normalization is to make it more accessible to manage training 
data. Avoiding data normalization will provide useless results. 
The most common methods for data normalization are the 
z-normalization and the min-max scale. In this study, data 
normalization was completed with the min-max method which is 
the most commonly used method for data processing. With this 
method the data is transformed to a value between 0 and 1 (Pradhan 
and Lee, 2010), following the formula below, if yi (i = 1,2,3,…, n):

 Y
y y
y yi
i min

max min
�

�
�

 (14)

Yi is the normalized value of yi, ymin, and ymax is the minimum and 
maximum values of yi respectively.

Second, separate the data into training and testing data. This step 
for the training stage of the model built and to update the weights 
of the network. The main purpose of this step is to verify the 
performance of the network using un-trained data and provide 
confirmation of its level of accuracy. There are no mathematical 
rules for determining the minimum size of each component 
(Nefeslioglu et al., 2010). In this study, the size of the training 
data is 80% or 202 data, and the testing data is 20% or 50 data. 

The neural network applied in this study consists of four layers; 
an input layer; two hidden layers; and an output layer, and the 

Figure 2: The multilayer perceptron (MLP) neural networks

Table 1: Variable and descriptive statistics
Variable definition Variable name Mean SD
Monthly electricity 
consumption (kWh)

ElectCons 18458.85 3229.21

Maximum historical price Pmax 2.51 0.38
Cumulating series of 
price cuts

Pcut -0.09 0.09

Cumulating series of 
price recoveries

Prec 0.03 0.02

Monthly degree days DD 353.88 181.99
Monthly population 
growth

Pop 0.04 0.01

Monthly GDP growth GDP 3.76 3.64
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activation function used is linear. The ascertainment of architecture 
and activation function in this study is based on the lowest MSE 
value after conducting a series of experiments with different 
combinations of architectures and activation functions (Figure 4).

Where I is input, H is hidden layers, B is bias and O is output.

After taking the weight value of each neuron, the next step is to 
discover the variable importance relative between the inputs. This 
is to recognize the relationship between the input and the output. 
Variable importance or relative importance of input factors can be 
assessed by calculating the connection weights of neurons. This 
involves partitioning the hidden output connection weights into the 
components that are connected with each input neurons (Garson, 
1991; Goh, 1995). Nevertheless, in assessing this relative importance, 
the Garson algorithm only calculates relative importance for a hidden 
layer and only examine absolute values. Thus, to generate output that 
is more under our craved, we modify the algorithm with backward 
examination because our neural network architecture has two hidden 
layers and no longer uses absolute values.

The calculation starts from the second hidden layer to find the 
output of the first hidden layer. If the hidden layer n we notify with 
hm and our input is notified in and our output is o, then:

 Ph i om n m� �  (15)

 Qh
Ph

Pi
m

m

n

n
n

�

�� 1

 (16)

 Ri Qhn
m

m

m�
�
�

1

 (17)

The formula above is applied again to calculate the first hidden 
layer, using the results of the second hidden layer calculation. To 
resolve the relative importance of each variable, the above process 
continues with:

 Si
Ri
Rin
n�

�
 (18)

Figure 4: ANN architecture

Figure 3: Price decomposition
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The results of the estimation of relative importance will determine 
how much magnitude of the direct rebound effect examined 
from the relative importance value indicated by the Pcut input. 
The negative value of Pcut input confirms the amount of direct 
rebound effect.

Additionally, to compare the results of neural network computations, 
we calculate a Linear Regression Model (LRM), so that we can 
analyze the magnitude of the rebound effect of the two models. 
The general econometric model below shows the relationship 
between the variables in this study:

lnEC lnP lnP lnP lnDD
lnPop
t max t cut t rec t t

t

� � � � � �

�

� � � � �

�
1 2 3 4

5

, , ,

��6lnGDP ut t�  (19)

The ANN and regressions model were verified based on the amount 
of Mean Square Error (MSE), Root-Mean Square Error (RMSE) 
and coefficient of determination (R2).

4. EMPIRICAL RESULTS AND DISCUSSION

To begin with, the selection of the neural network model is one of 
the important stages before deciding to continue to the next step. 
The selection of this model can be provided in various ways, in 
this study the determination of the model is prepared by testing 
on several models to find the minimum MSE value of each of 
the models tested previously. From Figure 5 we can notice the 
difference in MSE of each model based on the number of hidden 
layers and activation functions. In the first model, it uses two 
hidden layers and a linear activation function, the second model 
applies one hidden layer and a linear activation function, the 
third model applies two hidden layers and a sigmoid or logistic 
activation function, and the fourth model uses one hidden layer 
and a logistic activation function.

From the bar chart above it can be seen that the MSE value in the 
first model is the lowest when compared to the others. So, in this 
study applying the first model, which uses two hidden layers and 
a linear activation function.

After determining the best model based on the lowest MSE value, 
we move to the next step. The neural network plot displayed in 
the Appendix exposes the graphical representation of the model 
built with weights in each connection. The black lines show the 
connections between layers and weights for each connection, while 
the blue lines present the bias that exists at each step. Further, 
before calculating the weights of each connection to determine the 
relative variable importance that is applied to see the magnitude 
of the direct rebound effect, we will calculate the performance 
of the selected model. In this case, the performance of the first 
neural network model (Figure 5) will be compared with the linear 
regression model (LRM) using the predicted value generated by 
the two models.

From Figure 6 we can observe the performance of both models, 
these are neural networks and linear regression models. The 
plot illustrates the two models are fit to line or close to the ideal 
line. However, when we observe the distribution of the plots, the 
neural network looks better than the regression. That is because 
the predicted values generated by the neural network are more 
concentrated in the ideal line. This indicates that the neural network 
has a more satisfying predictive value. 

Table 2 presents the estimation results using two approaches, the 
artificial neural network (ANN) and a linear regression model 
(LRM). The negative value is shown in the price cut parameter, 
both in the relative importance of the neural network and the 
regression coefficient proves the magnitude of the direct rebound 
effect. In ANN, the estimated rebound effect value is shown by the 
Pcut value of 11.17% and 21.95% for the train and test data. The 
amount is not too different from the estimation provided by LRM 
using min-max normalization data, which is 15.25% and 11.15% 
for the train and test data. However, using the LRM approach with 
the method most frequently used (logarithmic transformations of 
variables) gives a larger estimate of 32.4%.

Furthermore, the neural network value is quite consistent with 
the LRM, it confers that ANN can be an alternative to measure 
the magnitude of the rebound effect. The MSE value of ANN is 
0.00444 and 0.00228, still lower than the MSE value indicated 

Figure 5: Comparison of SME Values
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from the LRM with 0.03749, 0.00510 and 0.00712. This value 
affects the RMSE value of ANN which is also lower than the 
LRM. Besides, the value of R2 (the coefficient of determination) 
in the ANN model is 0.90 and 0.96 or better than the value of R2 
presented in the LRM. Therefore, in this study, the estimation 
results produced by ANN are better than the LRM recognized 
from the MSE, RMSE and R2 parameters. Figure 7 gives a view 
of the relative importance values from the test data as the best 
results in the model built.

From Figure 7 it can be seen that the GDP growth variable has the 
highest relative value of 47.56%, or in other words GDP growth is 
the most important input in the model developed, then followed by 
population growth with a value of 47.16% and degree days with 
a value of 11.31%. In addition to the three inputs, the maximum 
price and price recovery also have positive values in the model, 
particularly 10.52% and 5.4%, respectively. Furthermore, only the 
cumulative price cut variable is negative, which is 21.95%, while 
this negative value indicates the amount of direct rebound effect.

Figure 6: Model performance
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Figure 7: Relative importance variable

The magnitude of the direct rebound effect is 11.17-21.95% 
for household electricity consumption, higher than the rebound 
effect for the industrial sector in Taiwan as the results of a study 
conducted by Wu et al. (2016). The study carried by Wu et al. 
(2016) showed a magnitude of rebound effect around 10% for 
Taiwan’s industries. Though, this number is still smaller than the 
results of a study conducted by Su (2019), where the results of 
his study showed a magnitude of the rebound effect around 33% 
for the residential sector in Taiwan.

Moreover, when compared with other Asian countries such as 
China, the magnitude of direct rebound effects is between 37% and 
71.53%, even for the national average of 74.18% (Han et al., 2019; 
Li and Yonglei, 2012; Zhang and Peng, 2016), the magnitude of 
the direct rebound effect in Taiwan tends to be smaller. Likewise, 
when compared with Pakistan, studied from Alvi et al. (2018), 
the value of the rebound effect in Taiwan is still smaller because 
of the magnitude of the direct rebound effect in Pakistan which is 
69.5% for the long-run and 42.9% for the short-run.

5. CONCLUSIONS AND IMPLICATIONS

To conclude, concerning the increase in household energy demand, 
the Taiwan government makes an important step by reforming the 
energy sector. Expecting changes quickly and easily is naive while 
the mega project is being pursued by the Government. Because 
any major policy change may bring huge obstacles to the interests 
of the other party. However, they need to gives attention to some 
important issues correlated to the energy sector policy. One point 
to note is the rebound effect which is one factor causing the energy 
efficiency gap.

Studies on rebound effects have been provided in many countries 
using various approaches and the values obtained are also very 
diverse. Among the many approaches applied, as far as we know, 
no one has used an artificial neural network as an alternative to 
estimating rebound effects. ANN is a mathematical model that 
consists of an interconnected group of neurons and processes 
information using a computing-based connection.

Table 2: ANN and LRM results
Variables ANN LRM

Relative importance Coefficient
Train Test Train Test ln

Pmax 0.31495 0.10522 0.11681 (0.003)** 0.31314 (0.000)***
lnPmax,t 0.51435 (0.000)***

Pcut −0.11168 −0.21949 −0.15254 (0.000)*** −0.11155 (0.046)*
lnPcut,t −0.32402 (0.000)***

Prec 0.15591 0.05390 0.39384 (0.000)*** 0.46543 (0.000)***
lnPrec,t 7.36113 (0.000)***

DD 0.15033 0.11313 0.34673 (0.000)*** 0.23730 (0.000)***
lnDDt 0.12787 (0.000)***

Pop 0.03949 0.47162 0.20139 (0.007)** 0.36657 (0.012)*
lnPopt 0.26925 (0.000)***

GDP 0.45098 0.47560 0.10465 (0.005)** 0.09652 (0.211)
lnGDPt −0.00463 (0.581)

Constanta 0.05454 (0.43) −0.10695 (0.44) 9.2543 (0.000)***
MSE 0.00444 0.00228 0.03749 0.00510 0.00712
RMSE 0.06663 0.04774 0.19362 0.07141 0.08438
R2 0.90325 0.96386 0.7918 0.9081 0.8012
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From the calculation results, the magnitude of the direct 
rebound effect for residential electricity consumption in Taiwan 
is in the range of 11.17-21.95%. Additionally, to confirm the 
calculations result from ANN, we are using a linear regression 
model to compare. The LRM calculation results using min-max 
normalization data found the value of the direct rebound effect 
around 11.15-15.25%, and if using logarithmic transformations of 
variables, the rebound effect value increased to 32.4%.

Furthermore, modelling with ANN found that the GDP growth 
variable with a value of 47.56% was the most important input in 
the model built. GDP growth has direct implications for increasing 
household electricity consumption, as well as population growth, 
which has a role similar to GDP. Additionally, with a value of 
11.31%, the degree days which also indicate climate change, reveal 
that the effect of climate change is crucial in the use of household 
energy. Degree days must be one of the indicators judged by the 
government in assigning energy policies.

From the estimation results with the ANN approaches, it looks 
better than LRM, both from the MSE, RMSE and R2 values, so 
that ANN can be one of the alternative approaches in estimating the 
magnitude of the rebound effect. However, for further research, we 
recommend using a larger amount of data and more varied inputs 
to produce a better estimate value. The greater amount of data will 
largely determine the quality of the estimates produced by ANN. 
Besides, a very diverse model variation from ANN can be applied 
as another alternative in estimating rebound effects, particularly by 
using different types of data, so that a more comprehensive model 
will be found compared to other models that already exist. In the 
future analysis of Taiwan’s electricity consumption ’s rebound 
effect, the impact of technological innovation cannot be ignored, 
which will be the author ’s future research topic.
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