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ABSTRACT

In the past few decades, there are lot of discussions around global warming and climate change primarily due to the increased CO2 emissions generated 
by the consumption of fossil fuels, such as oil and natural gas. After an enormous effort, the EU-28 managed to reduce CO2 emissions in 2014 by 
25.7% comparing to 1990 (Kyoto Protocol). This effort should continue in the future so that the EU-28 achieve a 40% reduction on CO2 emissions 
by 2030. The current paper aims at investigating the optimum model to forecast CO2 emissions in the EU-28. To achieve this aim an autoregressive 
integrated moving average (ARIMA) (1,1,1)- autoregressive conditional heteroscedasticity (ARCH) (1) model was used, combined with the linear 
ARIMA model and the conditional variance of the ARCH model. The estimation of parameter optimisation of ARIMA(1,1,1)-ARCH(1) model was 
done with the maximum likelihood approach using the Marquardt (1963), and Berndt-Hall-Hall-Hausman algorithms and the three distributions 
(normal, t-student, generalized error), whereas for the estimation of the covariance coefficient the reversed matrix by Hessian was used. Finally, in 
order to forecast the ARIMA(1,1,1)-ARCH(1) model, a dynamic as well as a static process was applied. The results of the forecasting revealed that 
the static procedure provides a better forecast comparing to the dynamic one.

Keywords: CO2 Emissions, Autoregressive Integrated Moving Average (1,1,1)-Autoregressive Conditional Heteroscedasticity (1) Model, 
Forecasting, E.U 
JEL Classifications: C22, C53, Q50

1. INTRODUCTION

During the last decades, the increase of the greenhouse gas 
emissions is considered the biggest threat for global warming. 
The economic growth of developed countries pushes the 
intensive use of energy and the consumption of fossil fuels, which 
results to more residues and waste leading to environmental 
decomposition.

Data from the 1960s and 1970s, show that the concentration 
of CO2 in the atmosphere is increasing significantly. Hence, 
scientists put a lot of pressure to governments to take action. 

Unfortunately, it took the international community years to respond 
to this request. Back in 1988 the International Meteorology 
Organisation and the United Nations Environmental Program 
formed an intergovernmental committee for climate change. 
The evaluation report published in 1990, mentioned that the 
problem of temperature rise is an existing one and owes to 
be dealt with promptly. This outcome pushed governments to 
establish the United Nations Framework Convention on Climate 
Change (UNFCCC), which was signed in Rio de Janeiro in 1992. 
UNFCCC as well as the Kyoto Protocol that followed, form 
the only international frameworks for tacking climate change 
(United Nations Climate Change, 2019).
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The Kyoto Protocol is an international treaty (signed on 
11 December 1997, but entered into force on 16 February 2005), 
which sets the principles of reducing greenhouse gas concentrations 
in the atmosphere which cause temperature rise in the planet. Based 
on Kyoto Protocol, countries which have signed the treaty, are 
bound to reduce greenhouse gas emissions on average by 5.2% 
between 2008 and 2012, comparing to 1990 levels. The protocol 
is based on the principle of common responsibilities in tackling 
climate change but acknowledges the different capacity to achieve 
this based on each country’s economic growth.

Negotiations for resolving the global temperature increase 
problem were tough due to clashing interests. Consequently, 
opposing country-teams with diverging views were generated. 
For example, countries producing carbon, such as Japan, USA, 
Canada, Australia, New Zealand, but also members of OPEK 
with Russia and Norway, which support the development of 
oil and natural gas production, are affected by Kyoto Protocol 
because they need to reduce their production and instead switch 
to alternative energy sources. In addition, emerging makers such 
as China and India could not commit to reducing greenhouse gas. 
On the contrary, the European Union was the earnest supporter 
of Kyoto Protocol, which committed to reduce greenhouse 
gas emissions by 6% for 2012 and reduction of fossil fuel 
consumption by 16%.

Kyoto Protocol followed a second phase during the period 
2013-2020 known as Doha Amendment 2012. Thirty-eight 
developed countries participate among them 28 member states 
of the European Union. In this second phase, participating states 
commit to reduce their emissions to a level 18% lower than that of 
1990. The EU also has committed to reduce by 20% for that period.

The Paris agreement for climate change took place in December 
2015. This conference set two requirements for its application. The 
first one concerned the confirmation of the UNFCCC, by at least 
55 country-members and the second one concerned the minimum 
amount of greenhouse gas emissions, which each country need 
to follow.

The Kyoto Protocol applies to six greenhouse gases: Carbon dioxide 
(CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons 
(HFCs), perfluorocarbons (PFCs), and sulphur hexafluoride (SF6). 
Carbon dioxide (CO2) is a natural gas, which is defined by the 
photosynthesis into organic material. Most of the CO2 emissions 
are due to fossil fuel consumption such as carbon, petroleum, 
natural gas and the burning of biomass. CO2 emissions are also 
generated by the change in soil use, the car mobility and various 
others industrial activities. CO2 is the main anthropogenic 
greenhouse gas that affects the radioactive balance of the earth. 
Moreover, CO2 is the gas that form the basis in which other 
greenhouse gas are calculated, resulting in a dynamic overheating 
of the planet.

The majority of the countries, failed to achieve their commitments 
with regards to CO2 emissions. The European Union is taking 
notable measures for reducing CO2 emissions generated from the 
absorption of fossil fuels.

Given that there exists a two-way causal relationship between 
economic growth and CO2 emissions, a reduction on the CO2 
emissions will have an unfavourable impact on the economic 
growth of European Countries Table A1. Table A2, presents the 
relationship between per capita CO2 emissions and the per capita 
economic power of the 28 European Countries.

The amount of CO2 emissions during the period 1990-2014 in EU, 
USA, China and the World is presented in the Figure 1.

From the Figure 1 we detect that since the Kyoto Protocol in 
1990, the USA have reduced CO2 emissions by 0.63 % pa and 
the EU by 1.19% pa. On the contrary, China has increased CO2 
emissions by 5.49% pa whereas the global CO2 emissions are 
increasing by 0.73% pa.

The Table 1 presents the descriptive statistics for the per capita 
CO2 emissions in the European Union, the USA, China and the 
World from 1990 (Kyoto Protocol) until 2014. The descriptive 
statistics mean, standard deviation (Std. Dev.) and coefficient of 
variation (CV) of these variables are recorded below in Table 1.

Table 1 shows that the variability in the per capita CO2 emissions 
is greater in China and smaller in in the case of the USA.

The Figure 2 presents the rate of CO2 emissions in the EU-28 
countries.

The Figure 2 shows an overall downward trend of the CO2 
emissions between 1990 and 1999, with the exception of a peak in 
1996, when an exceptional of a cold winter which led to increased 
demand for heating. From 1999 to 2006, the CO2 emission for 
the EU-28 was relative stable. From 2006-2009 a sharp drop of 
CO2 emissions was detected as result of the global financial and 
economic crisis leading to the decrease of industrial activity of 
the European Union. The CO2 emissions increased again during 
the period 2009-2010 and dropped again between 2011 and 2014.

The remainder of the paper is organized as follows: Section 2 
provides a brief literature review. Section 3 presents the analysis of 
methodology. Section 4 summarizes the data. The empirical results 
are provided in Section 5 and Section 6 proposes the forecasting 
results. Finally, the last section offers the concluding remarks.

2. LITERATURE REVIEW

The forecasting issues are important and are being applied 
in various scientific fields, such as economics, meteorology, 
medicine, mechanics, ecology and many more. The increasing 
trend of the CO2 emissions in a global level due to human activity 
indicated the increased atmospheric concentration of CO2. Climate 
change, because of global warming, is one of the most prolific 
issues during the last years. Reddy et al. (1995) suggest in their 
research that the total average temperature increase will reach 
3-4°C, doubling the CO2 emissions concentration, whereas in 
2007 the intergovernmental committee for climate change reported 
an increase of the temperature between 1.1 to 6.4°C in the next 
100 years.
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Developed countries have a higher share of global CO2 emissions 
comparing to developing countries. Nakicenovic back in 1994, 
studies the prospect of greenhouse gas emissions in a rural 
context. His findings suggest that developing countries are 
responsible for less than the 16% of the CO2 concentration due 
to their previous consumption from mineral sources of energy. 
Developed countries have a higher share of global emissions. 
Researchers so far have investigated the forecasting of CO2 
emissions in various countries. Lotfalipour et al. (2013) have 
examined the economic aspects of CO2 emissions and their 
consequences for the case of Iran. In their study they apply Grey 
and autoregressive integrated moving average (ARIMA) models 
to forecast CO2 emission in the period between 1990 and 2011. 
Their results suggest that Grey models provided better results 
in terms of forecasting CO2 emissions. Based on their estimated 
results, the quantity of CO2 emissions will reach 925.680.000 

tons in 2020, which indicated an increase of 66% compared to 
2010, which is highly significant.

Rahman and Hasan (2017), investigated the CO2 emissions 
between 1972 and 2015 in the case of Bagladesh. The optimum 
prognostic model for the CO2 emissions in the period under 
investigation was the ARIMA(0, 2, 1) model. The results suggested 
that the CO2 emissions for years 2016, 2017 and 2018 will be 
83.94657, 89.90464 and 96.28557 metric tons respectively.

Pruethsan in 2007, analysed CO2 emissions in Thailand 
using the VARIMAX approach during the period 2000-2015 
and subsequently determined the VARIMAX(2, 1, 1) and 
VARIMAX(2, 1, 3) models as the optimal ones for the CO2 
forecast emissions in Thailand. The forecasting results (using 
the VARIMAX(2, 1, 1) model) show that CO2 gas greenhouse 

Figure 1: Amount of carbon dioxide emissions (metric tons per capita) from consumption of energy over 1990-2014 in E.U, U.S.A, China and 
World

Figure 2: Amount of carbon dioxide emissions (metric tons per capita) from consumption of energy over 1990-2014 in E.U

Table 1: Descriptive statistics for CO2 emissions (1990-2014)
Variables Mean Std. Dev. CV (%) Minimum (year) Maximum (year)
CO2 E.U 7.880 0.585 7.42 6.379 (2014) 8.540 (1990)
CO2 USA 18.789 1.209 6.43 16.310 (2012) 20.179 (2000)
CO2 China 4.173 1.930 46.24 2.152 (1990) 7.557 (2013)
CO2 World 4.384 0.377 8.59 3.986 (1999) 5.005 (2012)
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emissions will increase steadily and will reach 25.17% until 2025 
comparing to 2016, whereas using the VARIMAX(2, 1, 3) model 
the CO2 gas greenhouse emissions will increase steadily and will 
reach 41.51% until 2040 comparing to 2016.

Nyoni and Mutongi (2019) are using annual data to investigate 
CO2 emissions in the case of China from 1960 to 2017 using the 
Box-Jenkins approach. The ARIMA(1, 2, 1) model was shown to be 
the most suitable one to forecast CO2 emissions in the period under 
investigation. The study results reveal that CO2 emissions in China 
will increase and reach approximately 10.000.000 kt in 2024. This 
result forms a warning of the Chinese government with regards to 
clinical change and the overheating that China causes in the world.

Finally, Nyoni and Bonga (2019) use 1960-2017 data and a Box-
Jenkins approach to forecast CO2 emissions in China. The study 
proposes the ARIMA(2, 2, 0) as the optimum one to forecast 
CO2 emissions. It further suggests that by 2025, the annual CO2 
emissions in India will reach 3.890.000 kt. The results is critical 
to the Indian government with respect its short-term and long-term 
planning of climate change and global overheating.

3. THEORETICAL BACKGROUND

3.1. ARIMA Models
An ARIMA model is a generalization of an autoregressive moving 
average (ARMA) used in econometrics. ARIMA is one of the type 
of models in the Box and Jenkins (1976) methodology for analysis 
and forecasting a time series.

The ARIMA(p,d,q,) can be expressed as:
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3.2. Autoregressive Conditional Heteroscedasticity 
(ARCH)-GARCH Models
3.2.1. ARCH(q) model
Engle (1982) developed the ARCH model for testing the volatility 
of time series. The basic ARCH model consists of two equations, 

a conditional mean equation and a conditional variance equation. 
Both equations form a system that is estimated together with 
maximum likelihood (ML) method.

So, ARCH model is an ARMA and can be written as follows:

 yt t t= +µ ε  (conditional mean equation) (2)

where ut  is conditional mean of yt , and t  is the shock at time t.

The variance t  will be:

 ε σt t tu=

where ut  is a white noise with zero mean and variance of one 
u iidt → ( , )0 1 . ut  may or may not follow normal distribution.
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2  is the conditional variance of yt , ω is a constant term, 

and q is the order of the ARCH terms,  > 0 , i ≥ 0  and i > 0 .

3.2.2. GARCH(q,p) model
Bollerslev (1986) extended the ARCH model in a new one that 
allows the errors of variance to depend on its own lags as well as 
lags of the squared errors. In other words, it allows the extension 
of conditional variance to follow an ARMA process.

The GARCH model can be expressed as:

 yt t t= +µ ε (conditional mean equation) (4)
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the order of the ARCH terms, and p is the order of the GARCH 
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p = 0, then GARCH model is becoming an ARCH model.



Dritsaki and Dritsaki: Forecasting European Union CO2 Emissions Using Autoregressive Integrated Moving Average-autoregressive Conditional Heteroscedasticity 
Models Heteroscedasticity Models

International Journal of Energy Economics and Policy | Vol 10 • Issue 4 • 2020 415

3.3. ARIMA-ARCH/GARCH Model
The ARIMA-ARCH/GARCH model is one model in which the 
variance of the error term of the ARIMA model follows an ARCH/
GARCH process. In other words, the ARIMA-ARCH/GARCH 
model is a non-linear time series model which combined the 
lineal model ARIMA with the conditional variance of the ARCH/
GARCH model.

For the ARIMA-ARCH/GARCH process to be suggested, the 
following two phases should be applied. The first one uses the 
best ARIMA model which fits the stationary and linear data of 
the time series, whereas the linear model residuals should contain 
the non-linear part of the data. The second phase uses the ARCH/
GARCH model in order to include the non-linear patters of the 
residuals. The model combined the ARIMA model with the ARCH/
GARCH which contains the non-linear patterns of the residuals 
(Dritsaki, 2018).

The process of parameter estimation of the ARIMA-ARCH/
GARCH model is achieved through the logarithmic function of 
ML through nonlinear least squares using Marquardt’s algorithm 
(1963). The latter is presentd by the following function:
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t

T

( )  = ( )  −  






=

∑θ θ υ σ θ
1

2

2

1

 (6)

where θ is the vector of the parameters that have to be estimated 
for the conditional mean, conditional variance and density 
function, zt denoting their density function, D zt( ( ), )θ υ , is the 
log-likelihood function of [ ( )]yt  , for a sample of T observation. 
The ML estimator ̂  for the true parameter vector is found by 
maximizing (8) (Dritsaki, 2017; 2019).

3.3.1. Conditional Distributions
Logarithmic function of ML used for parameters’ estimation on 
volatility models for all theoretical distributions are the following: 
(Dritsaki, 2017; 2019).
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where θ is the vector of the parameters that have to be estimated for 
the conditional mean, conditional variance and density function, 
T is observations.

• t-student distribution
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3.4. Diagnostic Checking of the Model ARIMA-
ARCH/GARCH
Before we accept a fitted model and interpret its findings, it is 
essential to check whether the model is correctly specified, that 
is, whether the model assumptions are supported by the data. The 
diagnostic tests of ARIMA-ARCH/GARCH models are based on 
residuals. Residuals’ normality test is employed with Jarque and 
Bera (1980) test. Ljung and Box (1978) (Q-statistics) statistic for 
all time lags of autocorrelation is used for the serial correlation 
test. Also, for the conditional heteroscedasticity test we use the 
squared residuals of autocorrelation function.

3.5. Forecasting Performance Measures
In order to compare the forecasting performance of ARIMA-
ARCH/GARCH models we use the following statistics:

• Mean absolute error (MAE)
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Yi  is the vector of observed values of the variable being predicted.

îY  is the vector of n predictions.

It measures the average absolute deviation of forecasted values 
from original ones.
• Root mean squared error (MSE)
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MSE gives an overall idea of the error occurred during forecasting.
• The mean absolute percentage error (MAPE)
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This measure represents the percentage of average absolute error 
occurred. It is independent of the scale of measurement, but 
affected by data transformation.
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4. DATA

Annual data for CO2 emissions (CO2) in the E.U (metric tons per 
capita), are downloaded from the World Bank’s development 
indicators. The data is for the period from 1960 to 2014.

Figure 3 presents the course of the per capita CO2 emissions in the 
European Union between 1960 and 2014 at the level.

Figure 3 shows that the CO2 emissions at the EU present a random 
walk. Therefore, we will check for the stationarity of the series 
and its  Figure 4 autocorrelation.

From Figure 4 shows that the auto-regression coefficients decline 
with rapid pace, which implied that the series is non-stationary.

We then apply the aforementioned tests afresh, in order to 
investigate the presence of stationarity in the first differences of the 
series. Figure 5, shows the first differences of the CO2 emissions.

From Figure 5, we observe that the CO2 emissions present 
intense fluctuations in their first differences, which is a possible 
indication of stationarity. We then test the stationarity with the 
auto-correlation Figure 6.

Figures 5 and 6 both show that the series is likely to be stationary 
in its first differences.

The confirmation of the series stationarity is achieved by applying 
the unit root tests Dickey and Fuller (1979; 1981) and Phillips 
and Perron (1998).

Figure 3: CO2 emissions in Ε.U-28

Figure 4: Auto-regression partial autocorrelation of CO2 emissions on its level
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The results of Table 2, confirm that the series is stationary in the 
first differences. The next step is to determine the ARIMA(p, q) 
model, based on the results from Figure 6. The parameters p και 
q of the ARIMA model could be determined rom the partial auto-
correlation and auto-correlation coefficients comparing them 

respectively with the critical value ± = ± = ±
2 2

55

0 262

n
. . 

Moreover, to test for autocorrelation we use the Ljung and Box 
(1978) test determined by:

 
2

1

ˆ
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 
= +  
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∑

m
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n k
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Looking at the values of the partial autocorrelation and 
autocorrelation coefficients (Figure 6) the value for p is between 
0 < p < 1 and respectively, the value for q will be between 0 < q 
< 2. Using the values above, we chose the best ARIMA(p, d, q) 
model from the lowest values of AIC, SC, and HQ criteria. Table 3 
shows the values for p and q.

Figure 5: CO2 emission in their first differences

Figure 6: Autocorrelation and partial autocorrelation of CO2 emissions in their first differences

Table 3: Comparing models using AIC, SIC and HQ tests
ARIMA model AIC SC HQ
D CO2EE
(1,1,0) 0.167 0.240 0.195
(0,1,1) 0.192 0.265 0.220
(1,1,1) 0.111 0.221 0.153
(0,1,2) 0.170 0.280 0.213
(1,1,2) 0.147 0.294 0.204

Table 2: Augmented Dickey–Fuller and Phillips Perron 
unit root tests
Variable ADF P-P

C C,T C C,T
CO2EE ‒1.700(0) ‒1.787(0) ‒1.884(4) ‒1.786(1)
D CO2EE ‒5.284(0)* ‒6.854(0)* ‒5.502(4)* ‒6.870(2)*
 *, ** and *** show significant at 1%, 5% and 10% levels respectively. (2) The numbers 
within parentheses followed by ADF statistics represent the lag length of the dependent 
variable used to obtain white noise residuals. (3) The lag lengths for ADF equation were 
selected using Schwarz information criterion. (4) Mackinnon (1996) critical value for 
rejection of hypothesis of unit root applied. (5) The numbers within brackets followed 
by PP statistics represent the bandwidth selected based on Newey and West (1994) 
method using Bartlett Kernel. (6) C=Constant, T=Trend. (7) Δ=First differences
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Results from Table 3, reveal that based on Akaike (AIC), Schwartz 
(SIC) and Hannan-Quinn (HQ) criteria, ARΙMA(1,1,1) model is 
the most suitable one.

The estimation of the ARIMA(1,1,1) model is achieved by the ML 
method, whereas the optimisation of the model will be achieved 
using the Berndt-Hall-Hall-Hausman (BHHH), algorithm. The 
covariance coefficient will be estimated with the inverse Hessian 
matrix. Table 4, shows the results of estimating the ARIMA(1,1,1) 
model.

Results from Table 4, show that there aren’t any problems with 
the significance of the coefficients. Also, the coefficient for the 
error variation estimation, shown as SIGMASQ, is ρs = 0.058 
and is also statistical significant. The inverse roots of the model 
are AR = 0.94 and MA = 0.76 and are presented in the following 
Figure 7.

Figure 7 shows that the inverse roots of the model (inverted AR, 
MA roots), are within the inverted unit cycle, which confirms that 
the series under review is stationary.

We then test for heteroscedasticity (ARCH(q)) from the squared 
residuals of the model above. Table 5 shows the following results.

Table 5 reveals that both auto-correlation coefficients and partial 
autocorrelation coefficients after the first order, are not statistical 
significant. Therefore, the ARCH or GARCH procedures should 
be considered.

5. EMPIRICAL RESULTS

Since we found that there exists a first order ARCH-GARCH 
procedure (Table 5), we could move into the model specification 
followed by its estimation of the conditional mean and the 

Figure 7: Inverse roots of autoregressive integrated moving average (1,1,1) model

Table 4: Estimation of ARIMA(1,1,1) model
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conditional variance. Estimation of the ARIMA(1,1,1)-ARCH(1) 
or ARIMA(1,1,1)-GARCH(1,1) model is achieved with the ML 
method using the BHHH algorithm, the steps of the Marquardt 
method (1963), the three distributions (Normal, student’s, 
generalized error), while for the co-variance coefficient the 
inverse matix by Hessian is applied. Coefficient estimation as well 
as residual tests with respect to normality, auto-regression and 
conditional heteroscedasticity, are presented in Table 6.

From Table 6 shows that the ARIMA(1,1,1)-ARCH(1) model 
with the GED distribution is the most appropriate one (as it has 
the highest LogL value). All model coefficients are statistical 
significant and do not present any issues at the diagnostic issues. 

Therefore, we could use this model for forecasting purposes. 
Table 7 presents the results of the estimation of this model.

The estimate of the regression in the ARIMA(1,1,1)-ARCH(1) 
model could be presented as:

D CO2EEt = 0.933*D CO2EEt–1–0.846et–1 (conditional mean 
equation)

 t
2 =0.018+0.956 e2

t–1 (conditional variance equation)

Figure 8 shows the actual and fitted values of the series, as well 
as the residuals of the fitted model at the 95% confidence interval.

Table 5: Autoregressive conditional heteroscedasticity (q) process test

Table 6: Estimation of ARIMA(1,1,1)-ARCH(1)/GARCH(1,1) models
Parameter ARCH(1) GARCH(1,1)

Normal t-student GED Normal t-student GED
Mean equation

AR(1) 0.938* 0.938* 0.932* 0.932* 0.932* 0.924*
MA(1) ‒0.839* ‒0.839* ‒0.845* ‒0.864* ‒0.864* ‒0.873*

Variance equation
ω 0.019* 0.019* 0.017* 0.012 0.012 0.008
α 0.866** 0.866** 0.955* 1.024* 1.022* 1.212*
β - - - 0.067 0.066 0.069
Persistence - - - 1.091 1.088 1.281

- DOF=2201 PAR=2.609* - DOF=635.1 PAR=2.941*
LogL 6.172 6.170 6.510 6.330 6.321 7.008

Diagnostic tests
Q2(24) 21.316 21.302 23.714 22.188 22.153 24.806
ARCH-X2(1) 0.304 0.303 0.636 0.550 0.542 1.461
Jarque-Bera 1.235 1.236 1.203 1.074 1.074 1.104

*, **, ***Show significant at 1%, 5% and 10% levels respectively. (2) ( ) is the order of diagnostic tests. (3) LogL is the value of the logarithmic-likelihood. (4) Q2(24) is the Q-statistic of 
correlogram of squared residuals at twenty-four lags. (5) ARCH-X2(1) for autoregressive conditional heteroskedasticity, (6) the persistence is calculated as (α1+β1) for the GARCH model



Dritsaki and Dritsaki: Forecasting European Union CO2 Emissions Using Autoregressive Integrated Moving Average-autoregressive Conditional Heteroscedasticity 
Models Heteroscedasticity Models

International Journal of Energy Economics and Policy | Vol 10 • Issue 4 • 2020420

Looking at Figure 8, the residuals show that there is an ARCH 
procedure in the data.

6. FORECASTING

In order to forecast the ARIMA(1,1,1)-ARCH(1,1) models we 
use both the dynamic (n-step ahead forecasts) and static (one 

step-ahead forecast) procedure. The dynamic procedure computes 
forecasting for periods after the first sample period, using the 
former fitted values from the lags of dependent variable and ARMA 
terms. The static procedure uses actual values of the dependent 
variable. In the following diagram, we present the criteria for the 
evaluation of forecasting using the dynamic and static forecast 
respectively (Dritsaki, 2019).

Table 7: Estimates of ARIMA(1,1,1)-ARCH(1) model

Figure 8: Actual and fitted values, residuals of the model ARIMA(1,1,1)-ARCH(1) for D CO2EE
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The Figure 9 indicate that the static procedure gives better 
results rather than the dynamic (MSE and MAE are lower in the 
static rather than the dynamic process). Since ARIMA(1,1,1)-
ARCH(1,1) model is fit to the CO2 data, therefore we can use to 
forecast values for the next 6 years out-of sample (from 2015 to 
2020). The forecasted values of CO2 are given in Table 8.

Figure 10 presents the trend of the actual and the forecasted D 
CO2EE-28 values.

The forecasted values indicate that the CO2 present fluctuations 
until the end of 2020. The great drop as shown by the results of the 
current study for 2020, is consistent with the commitment which 
the EU promised by the Kyoto protocol, as well as the amendment 
of Doha in 2012.

7. SUMMARY AND CONCLUSION

The degradation of environment becomes the recrudescence of the 
environment via the exhaustion of sources such as air, water and soil. 
This degradation is a consequence of a combination of an already 
big and constantly growing population, the continuing economic 
growth, the technological exhaustion of natural resources and the 
pollutant technology. The results of these damages to the human 
lifestyle and prosperity have caused a great amount of concern.

Many studies showed that there is an influence of economic 
growth to environmental degradation. The correlation between 

Table 8: Forecasted values of E.U-28 CO2 emissions
Year D CO2EE Forecasted CO2EE 95% Confidence interval

Lower Upper
2015 0.155 6.534 6.490 6.603
2016 ‒0.235 6.299 6.254 6.341
2017 0.371 6.670 6.627 6.712
2018 ‒0.564 6.106 6.055 6.172
2019 0.842 6.948 6.912 6.989
2020 ‒1.270 5.678 5.644 5.703

Figure 9: Dynamic and static forecast

Figure 10: Time series plot for actual and forecasted D CO2EE-28 values
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per capita GDP and CO2 emissions is positive, implying that the 
increasing per capita GDP leads to increase of CO2 emissions. 
No turning point is found at which emissions start to decrease. 
Market economy mechanisms according to studies’ results are 
not sufficient in the decline of CO2 emissions. For this reason, 
legal regulations are required to avoid further environmental 
degradation.

The purpose of this paper is to model and forecast CO2 emissions of 
28 member countries of EU based on annual data (from 1960 until 
2014). Using ARIMA(1,1,1)-ARCH(1) model, ML methodology, 
Marquardt’s algorithm methodology (1963) and BHHH, we 
forecasted CO2 emissions for the next 6 years (2015-2020). The 
results of forecasting showed that CO2 emissions will display 
fluctuations until the end of 2020. The year 2020 will present 
a considerable decrease of CO2 emissions reaching 33.8% less 
than the year 1990 (Kyoto Protocol) and will cover by far the 
commitment of EU countries on the above Treaty. Moreover, after 
the biblical disasters worldwide (the burning of Amazon forest 
which covers 60% of the total rainforest, the lack of drinkable 
water) more countries such as USA, China, India and OPEC 
countries can adapt with last years’ phenomena and decrease CO2 
emissions, avoiding planet’s major disaster. According to our 
examined model, European Union will manage and reduce more 
CO2 emissions by 40% in relation to 1990 and once more will be 
consistent with Kyoto protocol.
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APPENDIX

Table A1: CO2 emissions (metric tons per capita) 
European Union, United States, China, World
ETH E.U U.S.A China World
1960 5.765 16.000 1.170 3.099
1961 5.925 15.681 0.836 3.070
1962 6.213 16.014 0.661 3.141
1963 6.578 16.482 0.640 3.245
1964 6.794 16.968 0.626 3.361
1965 6.966 17.452 0.666 3.440
1966 7.119 18.121 0.711 3.539
1967 7.227 18.598 0.574 3.578
1968 7.594 19.089 0.605 3.684
1969 8.008 19.858 0.725 3.824
1970 8.492 21.111 0.943 4.015
1971 8.658 20.980 1.042 4.074
1972 8.946 21.749 1.081 4.158
1973 9.348 22.511 1.098 4.299
1974 9.162 21.503 1.097 4.224
1975 8.944 20.402 1.250 4.121
1976 9.485 21.158 1.285 4.285
1977 9.411 21.532 1.389 4.343
1978 9.680 21.973 1.529 4.320
1979 10.053 21.780 1.543 4.482
1980 9.733 20.786 1.495 4.358
1981 9.156 19.767 1.460 4.150
1982 8.929 18.590 1.567 4.041
1983 8.780 18.572 1.629 3.954
1984 8.702 18.977 1.750 4.025
1985 8.904 18.882 1.871 4.074
1986 8.859 18.721 1.939 4.124
1987 9.002 19.350 2.038 4.152
1988 8.856 20.010 2.151 4.227
1989 9.080 20.076 2.153 4.244
1990 8.584 19.323 2.152 4.194
1991 8.583 19.056 2.229 4.173
1992 8.312 19.139 2.309 4.068
1993 8.171 19.347 2.443 4.002
1994 8.039 19.361 2.566 4.011
1995 8.153 19.277 2.756 4.036
1996 8.362 19.496 2.844 4.071
1997 8.157 19.690 2.821 4.082
1998 8.156 19.579 2.677 4.050
1999 7.992 19.727 2.649 3.986
2000 8.013 20.179 2.697 4.038
2001 8.175 19.637 2.742 4.081
2002 8.106 19.613 3.007 4.088
2003 8.225 19.564 3.524 4.258
2004 8.210 19.658 4.038 4.414
2005 8.145 19.592 4.523 4.528
2006 8.179 19.094 4.980 4.636
2007 8.010 19.218 5.335 4.671
2008 7.804 18.462 5.702 4.762
2009 7.157 17.158 6.010 4.662
2010 7.356 17.443 6.561 4.835
2011 7.079 16.977 7.242 4.975
2012 6.918 16.310 7.425 5.005
2013 6.754 16.323 7.557 4.998
2014 6.379 16.503 7.544 4.981
Source: World development indicators

Table A2: States in Europe by GDP (PPP) per capita, and 
CO2 emissions
Country CO2 emissions 

(per capita)
GDP (PPP) 
per capita $

European Union 6.379 52.550
Austria 6.870 46.778
Belgium 8.328 43.338
Bulgaria 5.872 18.292
Croatia 3.974 21.240
Cyprus 5.260 32.373
Czech Republic 9.166 30.433
Denmark 5.936 46.223
Estonia 14.849 27.856
Finland 8.661 40.771
France 4.573 40.801
Germany 8.889 46.627
Greece 6.180 26.017
Hungary 4.266 25.553
Ireland 7.314 52.133
Italy 5.271 35.310
Latvia 3.498 23.487
Lithuania 4.378 27.537
Luxembourg 17.400* 99.738*
Malta 5.401 34.921
Netherlands 9.920 48.363
Poland 7.517 25.334
Portugal 4.332 27.218
Romania 3.498** 19.855**
Slovak Republic 5.662 28.641
Slovenia 6.214 29.879
Spain 5.034 33.285
Sweden 4.478 46.410
United Kingdom 6.497 40.762
World 4.981 15.332
Source: World development indicators, *Countries with large amount of CO2 emissions, 
and high GDP (PPP) (per capita), **Countries with small amount of CO2 emissions, 
and low GDP (PPP) (per capita)


