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ABSTRACT

Using a regular vine copula approach, this paper analyzes the dependence structure and tail dependence patterns among daily prices of three agricultural 
commodities (corn, soybean, and wheat) and two energy commodities (ethanol and crude oil) from June 2006 to June 2016. Our findings suggest 
that the prices of corn and crude oil are linked through the ethanol market, which are consistent with the results from previous studies. We also find 
that crude oil and agricultural commodity prices are statistically dependent during the extreme market downturns but independent during the extreme 
market upturns. In addition, the results from our sub-sample analysis show that both the upper and lower tail dependence between crude oil and other 
commodity markets become weaker in the recent years when the ethanol market became more mature.
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1. INTRODUCTION

It is widely believed that the expansion of the ethanol production 
in the United States has reshaped the linkages between agricultural 
and energy commodity markets. Traditionally, agricultural and 
energy commodity markets have been linked through the input 
channel (in terms of production and transportation costs). Now, 
due primarily to the very rapid expansion of crop-based ethanol 
production in the United States, the agricultural and energy 
commodity markets are increasingly connected through the 
demand channel - mainly through the policy-driven demand for 
corn as an ethanol feedstock - rather than the input channel1. In 
particular, various studies have reported a tighter linkages between 
agricultural and energy commodity markets since the boom of the 
U.S. ethanol industry took off in 2006.

1 Specifically, the Renewable Fuel Standard (RFS) program, created under 
the Energy Policy Act of 2005 and later expanded under the Energy 
Independence and Security Act of 2007, is the root of cause of the rapid 
growth in corn-based ethanol production in the United States. Compared 
to 3.9 billion gallons of biofuel produced in 2005, the act requires that 36 
billion gallons be produced in 2022. Of the 36 billion gallons of biofuels, 
at least 21 billion gallons must come from advanced biofuels and the 
remainder, at most 15 billion gallons, can come from conventional biofuels 
such as corn-based ethanol (Schnepf and Yacobucci, 2013).

For instance, Muhammad and Kebede (2009) find that from 2005 
to 2008 oil price movements could explain >60% of the change 
in corn prices, whereas from 1990 to 2004 only about 2% of the 
change in corn prices could be explained by oil prices. In addition, 
Tyner (2010) shows that, for the 1988-2005 period, the correlation 
between oil and corn prices is low and negative (−0.26). However, 
since 2006 there appears to be a strong and positive correlation 
between the prices of oil and corn. Indeed, Tyner (2010) reports 
a 0.80 (0.95) correlation between oil and corn prices for the 
period 2006-2008 (2008-2009). Hertel and Beckman (2012) also 
document a similar change in the correlation pattern between oil 
and corn prices.

Increased connection between agricultural and energy commodity 
markets raises the need for deeper understanding of the links 
and comovements between agricultural and energy commodity 
price returns. Over the last decade, a number of empirical studies 
have examined the interrelationship between agricultural and 
energy commodity markets2. Motivated by concurrent swings in 
agricultural and energy commodity prices experienced after the 

2 See Serra and Zilberman (2013) and Zilberman et al. (2013) for a literature 
review on price linkages and transmission patterns in biofuel-related 
markets.
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change in U.S. biofuel policies in 2006, some of these studies focus 
on the question of whether the ethanol/biofuel boom has caused a 
stronger dependence between agricultural and energy commodity 
prices. However, the results from these studies are rather mixed.

For example, Campiche et al. (2007) show that the prices of 
corn and soybean - the key agricultural commodities used for 
ethanol/biofuel production - are cointegrated with crude oil 
prices over the period of 2006-2007 but not during the period 
2003-2005. Similarly, Du and McPhail (2012), Kristoufek et al. 
(2012), and Lucotte (2016) examine the connections among the 
prices of agricultural and energy commodities before and after 
the food crisis of 2007/2008, and find that their prices are much 
more closely linked after the crisis. On the contrary, Gilbert 
(2010) reports that the 2007-2008 agricultural price spikes could 
mostly be explained by macroeconomic and monetary factors, 
and that the biofuel demand growth is not the main cause of the 
agricultural price booms. Consistent with Gilbert (2010), Reboredo 
(2012) investigates extreme market dependence between oil and 
agricultural commodity prices using copulas, and finds that price 
spikes in the corn and soybean markets during the period 2007 
to 2011 are not caused by extreme upward oil price movements. 
In addition, Baumeister and Kilian (2014) show that there is no 
compelling evidence that the change in U.S. biofuel policies in 
May 2006 has created a tight link between oil and agricultural 
commodity markets.

Despite a number of empirical studies on the agriculture-energy 
nexus, relatively little attention has been paid to the dependence 
structure between agricultural and energy commodity prices 
and their extreme comovements. Reboredo (2012) and Han 
et al. (2015) are among the few recent authors who analyze 
tail dependence patterns (or extreme comovements) between 
the prices of agricultural and energy commodity during the last 
decade. Considering weekly data from January 1998 to April 2011, 
Reboredo (2012) employs several bivariate copulas to study the 
extreme market dependence between oil prices and agricultural 
commodity prices (namely, corn, soybean and wheat prices). 
The results from his study indicate that agricultural commodity 
prices are independent of extreme upward price movements in the 
oil market even in the last 3 years of the sampling period. Han 
et al. (2015) investigate tail dependence between the returns on 
agricultural and energy commodity indices using a time varying 
symmetrized Joe-Clayton copula. Using daily data from January 
2000 to January 2014, their results suggest that both lower and 
upper tail dependence are strongest during the financial crisis 
of 2008. Similar to Reboredo (2012), they find that lower tail 
dependence is in general stronger than upper tail dependence. 
While these studies provide useful information on the dependence 
structure as well as tail dependence between two commodity 
markets, little is still known on the multivariate dependence 
structure of agricultural and energy commodity markets.

Accordingly, this paper attempts to fill the gap in the literature 
by analyzing the dependence structure among daily returns of 
three agricultural commodities - corn, soybean, and wheat - and 
two energy commodities - ethanol and crude oil - using a regular 
vine (or R-vine) copula methodology. The major advantage of the 

R-vine copula approach is that it allows us to capture potentially 
complex dependence structure and tail dependence patterns in a 
multivariate framework. Therefore, it allows us to uncover not 
only information regarding the upper and lower tail dependence 
between any two commodity markets but also information 
regarding the overall connections among multiple commodity 
markets. Furthermore, we add to the literature by examining 
whether and how the dependence structure and the degree of 
tail dependence change between the two periods of ethanol 
production: The rapid growth period (June 2006-June 2011) and 
the slowing growth period (June 2011-June 2016). Our findings 
should provide valuable information for practitioners, academics 
and policy makers regarding the linkages between the agricultural 
and energy commodity markets. In addition, as agricultural and 
energy commodity markets are often thought of as an alternative 
market for risk diversification purposes, the results from this study 
should also provide useful information for investors about portfolio 
diversification and risk management.

The remainder of this paper is organized as follows. Section 2 
describes the data used in our analysis. Section 3 is devoted to 
explaining the regular vine copula methodology. Section 4 presents 
the results of the empirical analysis, and Section 5 concludes the 
paper.

2. DATA

Our empirical analysis is based on daily prices for three agricultural 
commodity futures: Corn, soybean and wheat futures; and two 
energy commodity futures: Ethanol and crude oil futures. All 
prices are obtained from the Datastream database. The price data 
span from June 1, 2006 to June 30, 2016, from which a sample 
of daily log return series are constructed using the nearest futures 
contracts. At the rollover date, care has been taken to ensure 
that the same futures contract is used to calculate the daily log 
returns. This yields a total of 2536 observations for each return 
series. Apart from examining the dependence structure of the 
five commodity markets for the whole sample period, we also 
investigate how the dependence structure and the degree of tail 
dependence change over the two sub-periods: June 2, 2006-June 
16, 2011 and June 17, 2011-June 30, 2016. The first sub-period 
corresponds to the period of rapid expansion of ethanol production 
in the United States, whereas the second sub-period corresponds to 
the period of slowing growth in ethanol production (U.S. Energy 
Information Administration, 2011). Each sub-period has a total 
of 1268 observations.

Table 1 reports summary statistics (Panel A) and correlation 
matrix (Panel B) for the daily log returns on the futures contracts 
of corn, soybean, wheat, ethanol, and oil for the entire sample 
period. For each return series, the mean is very small relative to its 
standard deviation. As expected, oil returns are the most volatile 
series among the five commodity returns. All returns series are 
only slightly skewed, but have a high excess kurtosis (especially 
for the soybean, ethanol, and oil return series). The significant 
Jarque-Bera (JB) test statistics indicate that all daily log returns 
are not normally distributed. The Augmented Dickey-Fuller tests 
show that all commodity returns are stationary.
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Both first-order autocorrelation (ρ(1)) and Ljung-Box (Q(5)) 
tests indicate that there are serial correlations in the two energy 
commodity returns but not in the three agricultural commodity 
returns. In addition, the Ljung-Box test statistics for the squared 
return series (Q2 (5)) suggest that ARCH effects (or volatility 
clustering) are present in all return series. Unconditional 
correlations provide evidence of weak dependence between oil 
and other commodities. More specifically, the linear correlation 
coefficients between oil and other commodities range between 
0.247 (for the pair of oil and wheat returns) and 0.342 (for the 
pair of oil and soybean returns). The highest linear correlation is 
found between corn and wheat returns (0.647).

3. METHODOLOGY

In this paper, we apply the R-vine copula approach to study 
the dependence structure and tail dependence (or extreme 
comovements) among returns of three agricultural commodity 
futures (corn, soybean, and wheat futures), and two energy 
commodity futures (ethanol and crude oil futures). The approach 
consists of three stages. The first stage involves modeling the 
marginal distributions for the individual commodity returns. In the 
second stage, the R-vine copula is estimated using the standardized 
residuals obtained from the first stage. The third stage involves 
calculating the upper and lower tail dependence coefficients.

3.1. Modeling Marginal Distributions
In the first stage, the marginal distributions for all commodity 
returns are modeled. To account for possible serial correlation 
and volatility clustering in commodity returns, we consider four 
alternative GARCH models: A GARCH(1,1) model with a constant 
unconditional mean, an AR(1)-GARCH(1,1) model, an MA(1)-
GARCH(1,1) model, and ARMA(1,1)-GARCH(1,1) model. Let  
yi,t denote the daily log return for commodity i. The ARMA(1,1)-
GARCH(1,1) model is specified as follows:

yi,t=μi+ϕiyi,t-1+θiεi,t-1+εi,t (1)

2 2 2
, , 1 , 1− −= + +i t i i i t i i tσ ω α ε β σ  (2)
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i t
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Where D(0,1) is a zero mean and unit variance probability 
distribution3. For each return series, the mean model with the 
lowest Bayesian Information Criterion (BIC) is chosen. The series 
of standardized residuals, zi,t, is then transformed into a standard 
uniform variable or copula data (denoted as μi,t) using an empirical 
distribution function (EDF). The series zi,t is also referred to as 
filtered returns. Several goodness-of-fit tests are performed to 
ensure that the marginal distributions are appropriately specified.

3.2. Selecting and Estimating Regular Vine Copula
The second stage involves estimating the R-vine copula using the 
standard uniform variables obtained from the first stage. Simply 
put, an R-vine copula is a multivariate distribution for which the 
marginal distribution of each variable is standard uniform. Let 
z=(z1,z2,z3,z4,z5) be a five-dimensional random vector of filtered 
commodity returns (or standardized residuals in equation (3)) 
with a joint distribution function F(z) and a joint density function 
f(z). According to the Sklar’s theorem (Sklar, 1959), the joint 
distribution of  z can be expressed as:

F(z)=C(u1,u2,u3,u4,u5) (4)

Where C: [0,1]5→[0,1] is a copula function, and ui=Fi(zi) is the 
marginal distribution function of zi for i=1,2,…,5. Suppose that 
C and Fi are differentiable. Then, the joint distribution function 
of z can be written as:

f(z)=f1(z1) f2 (z2)...f5(z5)c(F1(z1),F2 (z2),…,F5(z5)) (5)

Where C is the density of the copula and fi=(fizi) is the density 
of Fi=Fi(zi).

In particular, the copula function represents the dependence 
structure of a multivariate random vector of filtered commodity 
returns. Thus, we can use multivariate copulas to analyze tail 
dependence among multiple commodity returns. Two most obvious 

3 For the GARCH (1,1) model with a constant unconditional mean, both ϕi 
and θi are set to zero. θi is set to zero for the AR(1)-GARCH (1,1) model, 
whereas ϕi is set to zero for the MA (1)-GARCH (1,1) model.

Table 1: Summary statistics and correlation analysis on 
daily log returns on the futures contracts of corn, soybean, 
wheat, ethanol, and oil
Commodity Corn Soybean Wheat Ethanol Oil
Panel A: Summary statistics
Mean (%) −0.003 0.062 −0.035 0.094 −0.051
Standard 
deviation (%)

1.974 1.654 2.191 1.874 2.390

Skewness −0.102 0.385 −0.012 −0.561 0.082
Excess 
kurtosis

1.813 10.684 1.503 5.786 3.904

Minimum (%) −10.409 −8.141 −9.973 −16.990 −`13.065
Maximum (%) 8.6618 20.3209 8.7943 9.7525 14.5464
JB 353.30* 12149.00* 239.93* 3678.90* 1618.20*
ADF −36.05* −36.11* −36.23* −33.283* −36.90*
ρ(1) 0.019 0.010 0.000 0.129* −0.061*
Q (5) 4.98 3.65 3.22 49.66* 16.35*
Q2 (5) 167.50* 50.79* 219.80* 285.40* 699.50*
Panel B: Correlation matrix
Corn 1.000
Soybean 0.610 1.000
Wheat 0.647 0.469 1.000
Ethanol 0.546 0.406 0.413 1.000
Oil 0.291 0.342 0.247 0.308 1.000
Summary statistics (Panel A) and correlation matrix (Panel B) are presented for daily log 
returns on the futures contracts of corn, soybean, wheat, ethanol, and oil for the period 
June 2, 2006-June 30, 2016. The total number of observations is 2536 for each return 
series. JB is the JB test statistic, where * denotes the rejection of the null hypothesis of 
normality at the 1% significance level. ADF is the Augmented Dickey-Fuller test statistic, 
where *denotes the rejection of the null hypothesis that the respective return series follows 
a unit root process at the 1% significance level. ρ(1) is the first-order autocorrelation, 
where *denotes the rejection of the null hypothesis that the first-autocorrelation of the 
respective return series is equal to zero at the 1% significance level. Q (5) is the Ljung-Box 
test statistic for the return series, where *denotes the rejection of the null hypothesis that 
there is no serial correlations in the return series up to order 5. Q2 (5) is the Ljung-Box test 
statistic for the squared return series, where *denotes the rejection of the null hypothesis 
that there is no ARCH effect in the return series up to order 5.
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choices of multivariate copulas are the Gaussian and Student’s t 
copulas. However, the Gaussian copula cannot capture non-linear 
dependence between random variables. In other words, it assumes 
that the dependence pattern between each pair of variables does 
not change with market conditions. In addition, it unrealistically 
imposes independence in the tails or during extreme market 
movements. On the other hand, the Student’s t copula allows us to 
capture tail dependence. However, it requires all pairs of random 
variables to have exactly the same degree of tail dependence, 
which seem to be unrealistic. Therefore, both Gaussian and 
Student’s t copulas are too restrictive, especially when modeling 
the dependence structure of more than two random variables.

This paper exploits the more flexible multivariate copula 
construction method (“pair-copula construction (PCC) method”). 
The PCC method was first proposed by Joe (1996) and further 
extended by Bedford and Cooke (2001; 2002) and Kurowicka and 
Cooke (2006). The idea of the PPC method begins by factorizing 
a joint density function into marginal and conditional density 
functions. For example, a five-dimensional density function can 
be factorized as:

f(z)=f1(z1)f2|1(z2|z1)f3|1,2(z3│z1,z2)f4|1,2,3(z4│z1,z2,z3)f5|1,2,3,4(z5|z1,z2,z3,z4)
(6)

Using the Sklar’s theorem, any conditional marginal distributions 
in the right hand of (6) can be expressed as:

f(zi│ν)=czi,νj|ν-j(F(zi│ν-j),F(νj│ν-j))f(zi|ν-j) (7)

With

( )
( )( ), | | , ( | )

|
( | )

i j jz i j j j
i

j j

C F z F
F z

F
ν ν ν ν

ν
ν ν

− − −

−

∂
=

∂
í (8)

Where ν is the conditioning set of marginal distribution of zi, νi is a 
variable in the set ν, and ν-j is the set of variables in ν excluding νi. 
For example, f2|1(z2|z1) an be written as c1,2(F1,F2)f2, and f3|1,2(z3|z1,z2) 
an be expressed as c2,3|1(F2|1,F3|1)f3|1. Accordingly, the joint density 
function, f(z), can be decomposed as products of bivariate copula 
densities and marginal density function of zi

Obviously, the factorization in (6) is not unique. This suggests 
that there are a large number of possible PCCs from which to 
choose. Bedford and Cooke (2001) introduce a graphical structure 
called regular vine (or R-vine) structure to help organize different 
decompositions. In particular, a five-dimensional R-vine structure 
is defined by a sequence of four trees: T1,T2,T3,T4. T1 has five nodes 
and four edges. Edges in T1 then become nodes in T2. The two 
nodes in T2 are connected by an edge only if they share a common 
node in T1 (proximity condition). Edges in T2 then become nodes 
in T3. Again, the two nodes in T3 are connected by an edge only if 
they share a common node in T2 (proximity condition). Then, edges 
in T3 become nodes in T4, and the two nodes in T4 are connected 
by an edge only if they share a common node in T3. The joint 
density function of a five-dimensional R-vine copula is given by4:

4 Kurowicka and Cooke (2006) provide the derivation of the joint density of 
a general R-vine copula.

( ) ( ) ( ) ( )

5 4

, ( )| ( ) | ( ) | ( )
1 1

( , )
= = ∈
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i

k j e k e D e j e D e k e D e
k i e E

f f c F Fz (9)

Where Ei is a set of edges in Ti J(e)and k(e) are the two (conditional) 
nodes associated with each edge e, D(e) is the conditioning set 
associated with edge e. An example of a five-dimensional R-vine 
structure is illustrated in Figure 1, and its corresponding joint 
density function is:

f(z)=f1f2f3f4f5c1,2c1,4c2,3c2,5c1,3|2c2,4|1c3,5|2c1,5|2,3c3,4|1,2c4,5|1,2,3 (10)

According to Morales-Nápoles et al. (2010), there exist 
2( !/ 2) 2× ( )

2
−dd different R-vine decompositions for the

d-dimensions. Thus, there are 480 possible R-vine structures
for a five-variate density. In this study, we employ a sequential
estimation procedure proposed by Dißmann et al. (2013) to select
and estimate an R-vine structure as well as its corresponding
bivariate copulas. This procedure begins in the first tree of the
R-vine structure. The structure of the first tree is formed by
maximizing the sum of the absolute values of pairwise Kendall’s
tau coefficients. For the first tree, this is done using the standard
uniform variables obtained from the first stage. Given the selected
structure, the pair copulas are chosen from a range of 39 different
parametric bivariate copula families by minimizing the BIC5.
Copula parameters are estimated using the maximum likelihood
estimation (MLE) method. Once the first tree is specified and the
pair-copula families are chosen, the same is done for the second,
the third, and forth trees using the transformed observations,
F(zi│ν), calculated from equation (8).

3.4. Measuring Tail Dependence Coefficients
In the third stage, the upper and lower tail dependence coefficients 
are calculated to measure the degree of comovements between two 

5 The 39 bivariate copula families include Gaussian, Student’s t, Clayton, 
Gumbel, Frank, Joe, BB1 (Clayton-Gumbel), BB6 (Joe-Gumbel), BB7 
(Joe-Clayton), BB8 (Joe-Frank), Tawn type 1, Tawn type 2, and the rotated 
versions (90°, 180° and 270°) of Clayton, Gumbel, Joe, BB1, BB6, BB7, 
BB8, Tawn Type 1, and Tawn Type 2 copulas.

Figure 1: Estimated R-vine copula structure with 1 = Ethanol, 
2 = Corn, 3 = Soybean, 4 = Oil, and 5 = Wheat
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commodity markets at the extreme events. The upper and lower 
tail dependence coefficients for commodities i and j are defined, 
respectively, as:

( ) ( )1 1

1 1

1 2 ( , )lim Pr | lim
1− −

− −

→ →

− + = > > =  −U i i j j
u u

u C u uZ F u Z F u
u

λ

(11)

( ) ( )1 1

0 0

( , )lim Pr | lim
+ +

− −

→ →
 = < < = L i i j j

u u

C u uZ F u Z F u
u

λ (12)

In this study, we follow Loaiza et al. (2015) and calculate the 
non-parametric tail dependence coefficients for all pairs of 
commodities through a simulation exercise. Specifically, the 
estimated R-vine copula density obtained from the second stage 
is used to generate S=10,000 draws of the five standard uniform 
variables,  ( 10,000)

(1, ) (2, ) (3, ) (4, ) (5, ) ( 1){ , , , , } .=
=

s
s s s s s su u u u u This simulation 

exercise is replicated R = 1000 times. For each replication r, the 
upper and lower tail dependence coefficients are respectively 
estimated using the following non-parametric estimators:

1 2 ( , )
lim

ˆ
ˆ

1
−→

− +
=

−U

U U U

r
U

k S U

k k kC
S S S

k
S
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0

ˆ ( , )
limˆ

+→
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L

L L

r
L

k L

k kC
S S
k
S

λ (14)

Where kU/S and kL/S are the thresholds used in the estimation of 
tail dependence coefficients. Similar to Loaiza et al. (2015), we set 
kU/S = 0.99 and kL/S = 0.01. Ĉ(k1/S,k2/S) is the empirical copula, 
which can be estimated using:

( ) ( )1 2 1 2
, ,

1

1, 1ˆ ,
=

   = ≤ ≤   
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k k k kC F z F z
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The upper and lower tail dependence coefficients for each 
pair of commodities are calculated as 

1

(1/ )ˆ ˆ
=

= ∑
R

r
U U

r

Rλ λ  and 

1

(1/ )ˆ ˆ
=

= ∑
R

r
L L

r

Rλ λ , respectively. Confidence intervals for Ûλ  and
ˆ

Lλ are then constructed by computing the associated percentiles 
of their empirical distributions.

4. EMPIRICAL RESULTS

This section first reports the estimation results for the marginal 
distributions for the individual commodity returns. The section 
then proceeds to present the R-vine copula estimation results. 
Finally, we discuss the tail dependence results.

4.1. Marginal Distribution Estimation
Table 2 presents the parameter estimates and standard errors of 
the selected marginal distribution models for the whole sample 
period (Panel A), first sub-period (Panel B), and second sub-period 
(Panel C). For all sample periods, a GARCH(1,1) model with a 

constant unconditional mean is selected for all commodity return 
series except for the ethanol return series. In other words, the 
mean of these series is simply characterized by a constant. For 
the ethanol return series, the AR(1)-GARCH(1,1) model is chosen 
for both the whole sample period and the second sub-period, 
whereas the ARMA(1,1)-GARCH(1,1) model is selected for the 
first sub-period. This implies that it is necessary to include at least 
the autoregressive part to capture the strong serial correlation in 
ethanol return series (Table 1).

It is crucial that the marginal distribution models are well 
specified as marginal distribution misspecification can result in 
copula misspecification (Fermanian and Scaillet, 2005; Patton, 
2006). Hence, we apply several goodness-of-fit tests to confirm 
the adequacy of the chosen marginal distribution models. These 
tests include the Ljung-Box tests of lack of autocorrelation in the 
standardized residuals and the squared standardized residuals, 
the Engle’s (1982) Lagrange Multiplier (LM) test of lack of 
the ARCH effect in the standardized residuals, the LM tests of 
serial independence (Patton, 2006) of the first four moments 
of transformed standardized residuals or copula data, and the 
Kolmogorov-Smirnov test of uniformity of the copula data. The 

Table 2: Results for the marginal distributions
Commodity Corn Soybean Wheat Ethanol Oil
Panel A: June 2, 2006 to June 30, 2016
μi −0.000081 0.000673 −0.000700 0.000899 0.000061

(0.000346) (0.000268) (0.000472) (0.000354) (0.000346)
ϕi 0.122495

(0.021330)
ωi 0.000005 0.000003 0.000003 0.000010 0.000004

(0.000004) (0.000002) (0.000012) (0.000001) (0.000003)
αi 0.057551 0.069248 0.051514 0.097183 0.072531

(0.008766) (0.012372) (0.056051) (0.007071) (0.016776)
βi 0.929596 0.921669 0.943409 0.874143 0.923088

(0.010211) (0.013564) (0.063835) (0.009700) (0.018226)
Panel B: June 2, 2006 to June 16, 2011
μi 0.000758 0.000999 -0.000272 0.001240 0.000634

(0.000599) (0.000437) (0.000662) (0.000642) (0.000568)
ϕi 0.819652

(0.095655)
θi −0.743033

(0.111961)
ωi

0.000018 0.000003 0.000030 0.000010 0.000010
(0.000013) (0.000003) (0.000014) (0.000002) (0.000004)

αi 0.052156 0.070081 0.067055 0.085517 0.069174
(0.021722) (0.016065) (0.018115) (0.009920) (0.004581)

βi 0.911599 0.923528 0.885697 0.886500 0.914133
(0.044301) (0.017053) (0.036075) (0.013089) (0.011326)

Panel C: June 17, 2011-June 30, 2016
μi −0.000574 0.000507 −0.001067 0.000579 −0.000287

(0.000409) (0.000340) (0.000458) (0.000496) (0.000431)
ϕi 0.156408

(0.029782)
ωi 0.000009 0.000005 0.000004 0.000010 0.000003

(0.000001) (0.000002) (0.000003) (0.000001) (0.000004)
αi 0.079758 0.070717 0.059687 0.105519 0.082122

(0.006739) (0.007999) (0.016452) (0.009609) (0.029272)
βi 0.890516 0.901056 0.929859 0.864721 0.915080

(0.011189) (0.011742) (0.019396) (0.013999) (0.030061)
μi, ϕi, θi, ωi, αi, and βi are the parameters of an ARMA-GARCH model (refer to 
equations (1)-(3) in Section 3.1). Figures in parentheses are standard errors of the 
coefficient estimates
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p-values of these tests are reported in Table 3. All selected model 
pass all the tests at the 5% significance level, confirming that the 
marginal distribution models are appropriately specified.

4.2. Regular Vine Copula Estimation
The selected R-vine copula structure for the whole and two sub-
sample periods is presented in Figure 1, and the estimated parameters 
of the corresponding bivariate copulas are given in Table 4. While 
different pair-copula families (i.e., dependence patterns) are chosen 
for the two sub-sample periods, the R-vine structure – the connection 
structure between agricultural and energy commodity markets – 
remains the same during and after the period of rapid growth of U.S. 
ethanol production6. In particular, we find that the ethanol market 
has established a link between the corn and crude oil markets (see 
the first tree in Figure 1). This result is consistent with the findings 
of Tyner (2010) who uses price correlations between (1) corn and 
crude oil, and (2) corn and ethanol during different time periods to 
show that the prices of corn and crude oil are connected through the 
ethanol market. The interaction between corn and crude oil markets 
through the ethanol market is likely explained by the increased use of 
corn as ethanol feedstock induced by the Renewable Fuel Standard 
(RFS) mandate (Schnepf and Yacobucci, 2013).

As can be seen from Table 4, almost all the parameters of the 
conditional and unconditional bivariate copulas are statistically 

6  Recall that the R-vine structure is selected based on maximum spanning 
trees with the absolute values of pairwise Kendall’s tau coefficients as 
weights. 

significant at the 5% level. The only exception is the parameter of 
the conditional pair-copula cWheat,Oil|Corn,Soybean,Ethanol for the 
case of the whole sample period. Given the selected unconditional 
copulas, we find that dependence patterns between the returns of 
(1) corn and soybean, (2) corn and wheat, and (3) corn and ethanol 
are all captured by two-parameter copula families. These results 
indicate that there are strong co-movements between corn and 
these commodity markets during both extreme market downturns 
and upturns. In particular, the heavy-tailed Student’s t copula is 
chosen for the three pairs of commodity returns during the period 
of rapid growth in U.S. ethanol production (June 2, 2006-June 
16, 2011). This implies that the degree of tail dependence is the 
same in both the upper and lower tails for these commodity pairs. 
During the period of slowing growth in ethanol production (June 
17, 2011-June 30, 2016), the dependence pattern between corn and 
wheat is still best characterized by the Student’s t copula. However, 
the BB1 and Rotated BB1 (180°; “Survival BB1”) copulas are 
selected for the corn-soybean and corn-ethanol pairs, respectively. 
Given the estimated parameters, the upper (lower) tail appears to 
be somewhat heavier (lighter) than the lower (upper) tail for the 
corn-soybean (corn-ethanol) pair during the second sub-period.7

For the unconditional dependence patterns between ethanol and 
crude oil, the Rotated Gumbel (180°; “Survival Gumbel”) copula 
is selected for the first sub-period whereas the Gaussian copula 
is chosen for the second sub-period. This implies that, during 

7 Refer to Example 5.1 in Joe and Hu (1996) for the relationship between 
copula parameters and tail dependence coefficients of two-parameter 
families of Archimedean copulas.

Table 3: Tests of the marginal distribution specifications
Commodity Corn Soybean Wheat Ethanol Oil
Panel A: June 2, 2006-June 30, 2016
LBQ (10) on standardized residuals 0.4082 0.8349 0.6927 0.0743 0.8354
LBQ (10) on squared standardized residuals 0.4045 0.8970 0.7161 0.5112 0.4621
LM on squared standardized residuals 0.4674 0.9999 0.9988 0.8637 0.9999
1st moment LM test on transformed standardized residuals 0.9671 0.9985 0.9875 0.6815 0.9925
2nd moment LM test on transformed standardized residuals 0.8132 0.9988 0.9906 0.9604 0.9992
3rd moment LM test on transformed standardized residuals 0.9950 0.8702 0.9986 0.7620 0.9999
4th moment LM test on transformed standardized residuals 0.8224 0.9999 0.9993 0.9801 0.9996
Kolmogorov-Smirnov test 0.6822 0.7262 0.9980 0.7979 0.9999
Panel B: June 2, 2006-June 16, 2011
LBQ (10) on standardized residuals 0.6057 0.7866 0.8894 0.2533 0.9619
LBQ (10) on squared standardized residuals 0.9428 0.9389 0.6479 0.6073 0.9208
LM on squared standardized residuals 0.9985 0.9999 0.8941 0.9715 0.9999
1st moment LM test on transformed standardized residuals 0.9814 0.9999 0.9999 0.8763 0.9987
2nd moment LM test on transformed standardized residuals 0.9996 0.9906 0.8359 0.9222 0.9831
3rd moment LM test on transformed standardized residuals 0.9987 0.9933 0.9998 0.9801 0.9999
4th moment LM test on transformed standardized residuals 0.9975 0.9979 0.9833 0.9001 0.9973
Kolmogorov-Smirnov test 0.8678 0.9077 0.9999 0.9434 0.9999
Panel C: June 17, 2011 to June 30, 2016
LBQ (10) on standardized residuals 0.6295 0.1879 0.6947 0.3067 0.2957
LBQ (10) on squared standardized residuals 0.6066 0.9984 0.9683 0.2099 0.3586
LM on squared standardized residuals 0.7322 0.9999 0.9999 0.8232 0.9999
1st moment LM test on transformed standardized residuals 0.9481 0.9080 0.9646 0.9073 0.9593
2nd moment LM test on transformed standardized residuals 0.9506 0.9064 0.9868 0.8612 0.9985
3rd moment LM test on transformed standardized residuals 0.9457 0.6591 0.9957 0.9543 0.9808
4th moment LM test on transformed standardized residuals 0.9274 0.9978 0.9976 0.8337 0.9983
Kolmogorov-Smirnov test 0.8678 0.9077 0.9999 0.9434 0.9999
The table reports the -values from the Ljung-Box (LBQ) tests on standardized residuals and on squared standardized residuals, the Engle’s (1982) Lagrange Multiplier (LM) tests 
on squared standardized residuals, the LM tests of serial independence (Patton, 2006) of the first four moments of transformed standardized residuals or copula data, and the 
Kolmogorov-Smirnov test of uniformity of the copula data
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the period of rapid expansion of ethanol production, ethanol and 
crude oil returns are more highly correlated in periods of market 
downturns than in periods of market upturns. Nonetheless, after 
the period of rapid growth of ethanol production, ethanol and 
crude oil returns seem to be somewhat independent during extreme 
market movements. For the other pairs of commodity returns, 
the (conditional) dependence patterns are all modeled with one-
parameter copula families. Because the estimated parameters 
of these conditional bivariate copulas are difficult to interpret, 
we derive the easier-to-interpret unconditional estimates of tail 
dependence coefficients using the simulation-based method 
described in Section 3.3. The results from the simulation exercise 
are discussed in the next section.

4.3. Tail Dependence Coefficients
The upper (lower) tail dependence coefficients are reported in the 
upper (lower) triangular parts of the matrix in Table 5. The upper 
(lower) tail dependence coefficient measures the probability that 
we will observe a large price hike (decline) in one commodity 
market, given that the price of another commodity also has had 
increased (decreased) significantly. Based on the results for the 
whole sample period, we find that the upper tail dependence 
coefficients are statistically significant at the 5% level for only 
four pairs of commodities: Corn-soybean, corn-wheat, corn-
ethanol, and ethanol-oil. The lower tail dependence coefficients 
are all statistically significant at the 5% level. This indicates that 

all commodity markets are significantly correlated during extreme 
market downswings. During both extreme market upturns and 
downturns, the most highly correlated markets are the corn and 
ethanol markets 0.3435;ˆ ˆ 0.3442)( U Lλ λ == , whereas the least 

Table 4: Results for the regular vine copula models
Commodity pair Pair-Copula Para1 SE1 Para2 SE2
Panel A: June 2, 2006-June 30, 2016
(Corn, Soybean) t 0.601 0.013 7.035 1.150
(Corn, Wheat) t 0.651 0.011 7.775 1.241
(Corn, Ethanol) t 0.602 0.014 4.218 0.451
(Corn, Oil|Ethanol) Gaussian 0.074 0.020 - -
(Soybean, Wheat|Corn) Survival Gumbel 1.072 0.014 - -
(Soybean, Ethanol|Corn) Frank 0.680 0.121 - -
(Soybean, Oil|Corn, Ethanol) Clayton 0.222 0.027 - -
(Wheat, Ethanol|Corn, Soybean) Survival Clayton 0.074 0.021 - -
(Wheat, Oil|Corn, Soybean, Ethanol) Frank 0.064 0.119 - -
(Ethanol, Oil) Gaussian 0.319 0.017 - -
Panel B: June 2, 2006 to June 16, 2011
(Corn, Soybean) t 0.649 0.017 5.991 1.240
(Corn, Wheat) t 0.646 0.016 8.437 2.170
(Corn, Ethanol) t 0.583 0.021 3.091 0.374
(Corn, Oil|Ethanol) Gaussian 0.137 0.027 - -
(Soybean, Wheat|Corn) Survival Gumbel 1.104 0.021 - -
(Soybean, Ethanol|Corn) Gaussian 0.117 0.027 - -
(Soybean, Oil|Corn, Ethanol) Frank 1.346 0.170 - -
(Wheat, Ethanol|Corn, Soybean) Clayton 0.081 0.032 - -
(Wheat, Oil|Corn, Soybean, Ethanol) Frank 0.371 0.168 - -
(Ethanol, Oil) Survival Gumbel 1.351 0.029 - -
Panel C: June 17, 2011-June 30, 2016
(Corn, Soybean) BB1 0.240 0.056 1.409 0.044
(Corn, Wheat) t 0.663 0.015 8.410 1.958
(Corn, Ethanol) Survival BB1 0.260 0.058 1.547 0.050
(Corn, Oil|Ethanol) Gumbel 1.005 0.015 - -
(Soybean, Wheat|Corn) Gaussian 0.080 0.028 - -
(Soybean, Ethanol|Corn) Gumbel 1.054 0.017 - -
(Soybean, Oil|Corn, Ethanol) Survival Gumbel 1.102 0.021 - -
(Wheat, Ethanol|Corn, Soybean) Survival Clayton 0.098 0.031 - -
(Wheat, Oil|Corn, Soybean, Ethanol) Rotated Gumbel (90 degrees) 1.022 0.018 - -
(Ethanol, Oil) Gaussian 0.220 0.026 - -

Table 5: Upper and lower tail dependence coefficients
Commodity Corn Soybean Wheat Ethanol Oil
Panel A: June 2, 2006-June 30, 2016
Corn 0.2844* 0.3139* 0.3435* 0.0534
Soybean 0.2877* 0.1581 0.1704 0.0445
Wheat 0.3128* 0.2175* 0.1908 0.0411
Ethanol 0.3442* 0.1737* 0.1722* 0.0665*
Oil 0.0487* 0.1150* 0.0466* 0.0600*
Panel B: June 2, 2006-June 16, 2011
Corn 0.3358* 0.3035* 0.3728* 0.0520
Soybean 0.3378* 0.1840 0.2080 0.0573
Wheat 0.3023* 0.2576* 0.1764 0.0447
Ethanol 0.3748* 0.2110* 0.2008* 0.0504
Oil 0.2093* 0.1615* 0.1350* 0.3326*  
Panel C: June 17, 2011-June 30, 2016
Corn 0.3696* 0.3153* 0.2741* 0.0349
Soybean 0.2288* 0.1900 0.2063 0.0391
Wheat 0.3176* 0.1383* 0.1772 0.0243
Ethanol 0.4393* 0.1633* 0.2123* 0.0403
Oil 0.0302 0.1111* 0.0222 0.0362
Upper and lower tail dependence coefficients are respectively reported in the upper and 
lower triangular parts of the matrix, where * indicates the rejection of the null hypothesis 
that the respective tail dependence coefficient is equal to zero at the 5% significance level
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highly correlated markets are the wheat and crude oil markets
( 0.0411; 0.04ˆ ˆ 66)U Lλ λ= = .

The results for the two sub-periods show that, during the market 
upturns, the corn market is significantly linked with the soybean, 
wheat, and ethanol markets. However, the upper tail dependence 
coefficients are insignificant for any other pairs of commodity 
markets. Comparing the upper tail dependent coefficients for 
the two sub-periods, we find that the degree of comovements 
between the returns of (1) corn and soybean and (2) corn and 
wheat remain relatively stable. Nonetheless, the degree of upper 
tail dependence between corn and ethanol returns is stronger 
during the first sub-period than during the second sub-period 

ˆ ˆversus( 0.3728 0.2741)= =U Uλ λ .  This indicates that the 
probability of simultaneous jumps in the prices of corn and 
ethanol has fallen as the ethanol market became more mature. 
While insignificant in both sub-periods, it is worth noting that 
the degree of upper tail dependence between crude oil and other 
commodity markets becomes even weaker during the period of 
slowing growth in U.S. ethanol production.

In addition, the lower tail dependence results indicate that all 
pairs of commodity markets are significantly correlated during the 
market downturns for the first sub-period but not for the second 
sub-period. For the second sub-period, the lower tail dependence 
coefficients are significant at the 5% level for most commodity 
pairs, except for the oil-corn, oil-wheat, and oil-ethanol pairs. 
While the lower tail dependence coefficients between oil and 
soybean markets are statistically significant for both sub-periods, 
the degree of dependence is weaker during the second sub-period 
than during the first sub-period. Similar to the results for the 
upper tail dependence, these findings suggest that the lower tail 
dependence between crude oil and other commodity markets 
starts to disappear in the recent years. Furthermore, we find that 
crude oil and other commodity returns are more dependent during 
extreme market downturns than during extreme market upturns 
for the first sub-period. However, during the second sub-period, 
we find neither asymmetric nor tail dependence between crude oil 
and most commodity markets (namely, corn, wheat, and ethanol). 
This empirical evidence regarding the change in the link between 
crude oil and agricultural commodity markets may be explained 
by the recent stability and slight drawdowns in ethanol production 
in the United States.

5. CONCLUSIONS

In this paper, we analyze the dependence structure and tail 
dependence patterns among returns of three agricultural 
commodity futures (corn, soybean, and wheat futures) and two 
energy commodity futures (ethanol and crude oil futures) from 
June 2, 2006 to June 30, 2016. Based on the results for the whole 
sample period, we find that the returns of corn and crude oil are 
linked through the ethanol market, and this is likely explained by 
the increased demand for corn as an ethanol feedstock. In addition, 
our empirical results indicate that crude oil and agricultural 
commodity prices are statistically dependent during the extreme 
market downturns but independent during the extreme market 

upturns. This evidence is consistent with Reboredo (2012) who 
reports that oil and agricultural commodity prices tend to move 
independently during market upswings.

We also examine whether and how the dependence structure and 
the degree of tail dependence evolve over the two periods of 
ethanol production: The rapid growth period (June 2, 2006 to June 
16, 2011) and the slowing growth period (June 17, 2011 to June 
30, 2016). Based on our sub-sample analysis, we uncover several 
interesting results. First, crude oil and agricultural commodity 
markets are connected through the ethanol market during both 
sub-periods. Second, the connection between the corn and ethanol 
markets during the extreme market upturns is stronger in the period 
of rapid growth than the period of slowing growth. Third, during 
the extreme market upswings, the prices of crude oil and other 
four commodities tend to move more independently in the slowing 
growth period. Forth, all commodity prices are likely to move 
together when markets experience downward movements in the 
first sub-period, but not in the second sub-period. In particular, in 
the second sub-period, the lower tail dependence coefficients are 
statistically significant for most commodity pairs, except for the 
oil-corn, oil-wheat, and oil-ethanol pairs. Finally, the lower tail 
dependence between crude oil and other commodity markets starts 
to disappear in the recent years when the ethanol market became 
more mature. Our findings regarding the change in the degree 
of connectedness between crude oil and agricultural commodity 
markets during the extreme market upturns and downturns should 
provide useful information for practitioners, academics and policy 
makers.
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