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ABSTRACT

Modeling and forecasting oil prices is an important issue for many researchers. One of the methods used in forecasting oil prices is Box-Jenkins 
methodology through ARIMA models. Although these models provide accurate forecasting over a short time period, they are not able to handle the 
volatility and nonlinearity presented on data series. For this reason, on this paper we examine a hybrid ARIMA-GARCH model in order to forecast 
the volatility in the return of oil prices. Moreover, on this paper, the Box-Cox transformation is used for data smoothing for the stabilization of 
variance and reduction of heteroscedasticity. Parameters’ estimation in the hybrid ARIMA-GARCH model is employed by ML (Maximum Likelihood) 
method using the steps of Marquardt’s Algorithm (1963) and Broyden-Fletcher-Goldfarb-Shanno algorithm for optimization. The results of the paper 
showed that the hybridation of ARIMA (33,0,14)-GARCH (1,2) model following normal distribution is the most suitable for forecasting the returns 
of oil prices. Finally, we use both the dynamic and static procedure for forecasting. The results showed that the static procedure provides with better 
forecasting than the dynamic.

Keywords: ARIMA, GARCH, Oil price forecasting, Hybrid ARIMA-GARCH, Box-Cox transformation 
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1. INTRODUCTION

Oil is considered to be one of the most important goods in the 
world. Its use is ubiquitous in everyday life. Due to its uniqueness, 
researchers need to develop a better understanding of its price 
dynamics so that industries that are supplied with or consume 
vast quantities of oil can take optimal decisions.

Oil’s dynamic modeling is a difficult task to accomplish because its 
price cannot be predicted in various time periods and it depends on 
many factors. During the past decades, oil price shows volatility. 
In 1999, during the Asian crisis, Iraq’s decision to increase oil 
production caused the decrease of oil price in the lowest level. In 
2001, the dot-com bubble caused panic, reducing oil price until 
the beginning of 2002. Following this upheaval, global economy 
regained its momentum, resulting in an upward trend of oil 
price. The factors that led to the reduction of oil production were 
the hostile relationships between the U.S. with the production 
countries. Price oil reached its highest peak, when the housing 
bubble burst in the U.S. causing credit crisis. The reduction of oil 

price that followed until its stabilization after the economic crisis 
of 2008, is a challenge for researchers investigating for a model 
who would forecast these situations.

Moreover, forecasting returns of oil prices, which is considered 
a basic economic variable, influences consumers’ decisions, 
businesses and financial institutions, as well as governments. 
Timely and reliable predictions of oil prices provide important 
information on those in the financial markets.

This paper tries to develop a hybrid ARIMA-GARCH model in 
order to investigate and forecast the characteristics of volatility in 
oil price using daily data from 20 October 1997 until 31 May 2017 
for a total of 4980 observations. The rest of the paper is as follows: 
Section 2 provides a brief literature review. Section 3 presents the 
analysis of methodology. Section 4 summarizes the data and the 
descriptive statistics. The empirical results are provided in Section 
5 and Section 6 proposes the forecasting results. Finally, the last 
section offers the concluding remarks.
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2. LITERATURE REVIEW

During last years, there is great interest from researchers for 
modeling volatility and forecasting oil price. Hansen and Lunde 
(2005) argued that information related to oil price is necessary 
for modeling producers’ oil price as well as calculating risk 
measures. Also, others found out that variations in oil prices have 
consequences not only in those countries that import but also in 
those countries that export oil. Rothemberg and Woodford (1996) 
have studied oil price instability in relation to inflation. Hamilton 
and Herrera (2004) in their paper argue the relationship between 
oil price and exports. Yang et al. (2002) refer to the relationship 
between investment and oil price and Elder and Serletis (2009) 
examine the relationship between oil price and monetary policy.

Furthermore, there are a number of papers relating oil price with 
inflation, exchange rate, production and employment decrease 
and competitiveness loss. In all these papers, techniques using 
autoregressive models are employed (Mirmirani and Li, 2004), 
cointegration and error correction models (Mohammadi 2009), 
GARCH models (Sadorsky, 2006, and Agnolucci, 2009), as well 
as neural networks (Yu, et al. 2008).

Finally, it can be said that all papers reach the same conclusion that 
the returns of oil prices present a unit root, have excessive kurtosis, 
are negatively skewed and don’t follow Gaussian distribution. 
Also, the volatility on the returns of oil prices is clustering and 
persistent, consistent with predictions of GARCH variety models.

3. THEORETICAL BACKGROUND

The development and designing of ARIMA models as forecasting 
tools of financial-economic variables is known as Box-Jenkins 
Methodology (1976). This methodology tries to find an ARIMA 
(p, d, q) model which satisfies the stochastic procedure where the 
sample derived from. Box-Jenkins methodology consists of four 
repetitive steps: Identification model, parameters’ estimation, 
diagnostic tests and model’s forecasting ability.

3.1. ARIMA Models
The autoregressive integrated moving average model of order 
p and q, ARIMA (p, d, q) is one of the time series forecasting 
methods for the nonstationary data series. The ARIMA (p, q, d) 
can be expressed as:

ϕp(L)(1-L)d(yt-μ)=ϑq(L)et (1)
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yt is. the time series, and et is the random error at time period t, 
with μ is the mean of the model.

d is the order of the difference operator. φ1, φ 2,…, φp  and ϑ1,ϑ2,…, 
ϑq are the parameters of autoregressive and moving average terms 
with order p and q respectively.

L is the difference operator defined as Δyt=yt-yt-1=(1-L)yt.

ARIMA models can be estimated following the Box-Jenkins 
approach. Given that the stationary procedure is essential 
for an ARIMA model, during the identification step data are 
transformed so that the time-series will become stationary. The 
stationary procedure is a necessary condition in building an 
ARIMA model.

3.2. Box-Cox Transformation Method
Box-Cox (1964) on their paper used a mathematical formula for the 
data transformation so that these can be more normally distributed 
and the variance equation corrects normality, linearity and reduces 
heteroscedasticity. The formula of the Box-Cox transformation is:
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Where, yt
yt are actual data in time t.
yt

*  are the transformed data in time t.
λ is the minimum value of mean square error of residuals.

The transformation of the above equation is valid only for positive 
values of time series yt>0.

If the values of time series contain also negative values, then the 
transformation will get the following form:
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Where,
λ1 is the transformation parameter, and
λ2 is chosen such that yt>−λ2.

The main objective in the analysis of data transformation in Box-
Cox (1964) technique is to calculate (estimate) λ parameter. For 
this reason, two approaches are necessary. The first approach is 
using the maximum likelihood method to estimate data because it 
facilitates the calculation of likelihood function. Also, maximum 
likelihood method is easy to obtain an approximate confidence 
interval for λ. The second approach uses Bayesian method to 
confirm if the model is fully specified.

3.3. GARCH Models
GARCH models are used mainly for modeling financial time 
series that present time-varying volatility clustering. The general 
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GARCH (r, s) model for the conditional heteroskedasticity 
according to Bollerslev (1986) has the following form:

yt=μt+zt (5)

Where,
μt is conditional mean of yt.
z is the shock at time t.

zt=σtet (6)

Where,
et→iid N(0,1).
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Where,

σ t
2  is the conditional variance of yt.

α0 is a constant term.
r is the order of the ARCH terms.
s is the order of the GARCH terms.
αi and βi are the coefficients of the ARCH and GARCH parameters, 

respectively.
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3.4. Hybrid ARIMA-GARCH Model
In order to recommend a hybrid ARIMA-GARCH model, two 
stages should be applied. In the first stage, we use the best ARIMA 
model that fits on stationary and linear time series data while the 
residuals of the linear model will contain the non-linear part of 
the data. In the second stage, we use the GARCH model in order 
to contain non-linear residuals patterns. This hybrid model, which 
combines ARIMA and GARCH model containing non linear 
residuals patterns, is applied to analyze and forecast the returns 
of oil prices.

3.5. Estimation of Hybrid ARIMA-GARCH Model
The hybrid ARIMA-GARCH model is a non linear time series 
model which combines a linear ARIMA model with the conditional 
variance of a GARCH model. The estimation procedure of ARIMA 
and GARCH models are based on maximum likelihood method. 
Parameters’ estimation in logarithmic likelihood function is done 
through nonlinear Marquardt’s algorithm (Marquardt, 1963). The 
logarithmic likelihood function has the following equation:
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Where θ is the vector of the parameters that have to be estimated for 
the conditional mean, conditional variance and density function, 
zt denoting their density function, D(zt(θ),υ), is the log-likelihood 
function of [yt(θ)], for a sample of T observation. The maximum 
likelihood estimator θ̂ for the true parameter vector is found by 
maximizing (8) (Dritsaki, 2017).

3.6. Diagnostic Checking of Hybrid ARIMA-GARCH 
Model
The diagnostic tests of hybrid ARIMA-GARCH models are based 
on residuals. Residuals’ normality test is employed with Jarque 
and Bera (1980) test. Ljung and Box (1978) (Q-statistics) statistic 
for all time lags of autocorrelation is used for the serial correlation 
test. Also, for the conditional heteroscedasticity test we use the 
squared residuals of autocorrelation function.

3.7. Forecast Evaluation
On hybrid ARIMA-GARCH models we use both the static and 
dynamic forecast. The dynamic forecast, also known as n-step 
ahead forecast, uses the actual lagged value of Y variable in order 
to compute the first forecasted value. The static forecast (one-step 
ahead forecast) of Yt+1 based on an hybrid ARIMA-GARCH model 
is defined as:

( )
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Where the εs follow the stated GARCH model.

To evaluate the forecast efficiency, we use two statistical measures, 
mean squared error (MSE) and mean absolute error (MAE).

MSE it computes the squared difference between every forecasted 
value and every realised value of the quantity being estimated, 
and finds the mean of them afterwards.

MSE has the following formula:

( )
n 2

i i
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Where,
Yi is the vector of observed values of the variable being predicted.

iŶ   is the vector of n predictions.

MAE it computes the mean of all the absolute, instead of squared, 
forecast errors. The formula is the following:

n

i i
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4. DATA AND DESCRIPTIVE STATISTICS

The data used in our paper come from energy information 
administration. Data are daily covering the period 20 October 1997 
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until 31 May 2017 including 4980 observations. Using the value 
of λ = 0.3374 which was calculated from XLSTAT of Excel and 
Equation (3) from Box-Cox, we transformed oil price time-series.

In the following Figure 1, the closing values as well as transformed 
values in oil prices are presented.

From Figure 1 we can see that transformed data are less volatile 
from the initial ones. Then, we examine normality in oil prices 
before and after the transformation.

From Figure 2, we can see that the transformed data have a better 
adjustment in relation to normal distribution. In the following 
Table 1, the descriptive statistics of Brent index are presented 
before and after Box-Cox transformation.

The Table 1 show that standard deviation of transformed series 
has reduced from 33.78242 to 2.392691. Also, we can see that 
in the transformed data there is no normality even though it has 
been reduced.

The daily return of oil price index after the data transformation is 
calculated as follows:

r =ln
y

y
×100= ln y -ln y ×100t

t

t-1
t t-1





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Where,

 yt is the daily closing price of oil price index at day t.

yt-1 is the daily closing price of oil price index at previous day.

rt are the daily returns of oil price index.

In the following Figure 3 we present the closing prices, returns 
and volatility of oil price index after the Box-Cox transformation. 
The volatility of oil prices is estimated from the daily squared 
returns (Sadorsky, 2006).

From Figure 3 we note that daily closing prices of oil follow a 
random walk whereas returns from oil prices seem to be stationary. 
The confirmation in stationarity of the returns of oil price index is 
done with Dickey-Fuller (1979; 1981) and Phillips-Perron (1998) 
unit root tests.

The results of Table 2 confirm that returns of oil prices are 
stationary in their levels. Consequently, for an ARIMA (p, d, q) 
model the value for d = 0.

On Table 3, the descriptive statistics of the returns on Brent are 
presented.

The results on Table 3 show that the mean of daily return on 
oil price is quite small in relation to its standard deviation. 
Also, the return in oil prices appear small positive asymmetry 
and leptokurtosis with fat tails and Jarque and Bera (1980) 
statistic proves that the return of oil prices don’t follow normal 
distribution.

On Table 4, the autocorrelation diagram on the return of oil price 
is presented.

Figure 1: Daily closing prices of oil before and after the 
transformation

Figure 2: Normality test in daily prices of oil before and after 
transformation

Table 1: Descriptive Statistics of Brent index before and 
after Box-Cox transformation
Brent Box-Cox brent
Mean 58.86256 Mean 8.281836
Median 53.15500 Median 8.362000
Maximum 143.9500 Maximum 12.88700
Minimum 9.100000 Minimum 3.280000
Standard deviation 33.78242 Standard deviation 2.392691
Skewness 0.436870 Skewness −0.080189
Kurtosis 1.951764 Kurtosis 1.919715
Jarque-Bera 386.4104 Jarque-Bera 247.4930
Probability 0.000000 Probability 0.000000
Sum 293135.6 Sum 41243.54
Sum Sq. Dev. 5682294.0 Sum Sq. Dev. 28504.63
Observations 4980 Observations 4980

Table 2: Unit root tests of the returns of Brent
Brent Augmented Dickey-Fuller Phillips-Perron

C C, T C C, T
−69,3773*(0) −69,3816*(0) −69,3794*[9] −69,3809*[8]

*,**,***show significant at 1%, 5% and 10% levels respectively. The numbers within 
parentheses followed by ADF statistics represent the lag length of the dependent variable 
used to obtain white noise residuals. The lag lengths for ADF equation were selected 
using Schwarz Information Criterion. MacKinnon (1996) critical value for rejection of 
hypothesis of unit root applied. The numbers within brackets followed by PP statistics 
represent the bandwidth selected based on Newey-West (1994) method using Bartlett 
Kernel. C=Constant, T=Trend
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The above results indicate that autocorrelation coefficients on lags 
14,15,18,33 and 35 and partial autocorrelation on lags 14,15,18,28 
and 33 on the return of oil price is larger than both standard errors 

( . )± = ± = ±
2 2

4980
0 02934

n
. Furthermore, according to 

Ljung-Box statistic on Table 4, the existence of ARCH or GARCH 
cannot be rejected after the 13th lag.

5. EMPIRICAL RESULTS

Following, we define the form of ARIMA (p, d, q) model given 
the results of autocorrelation and partial autocorrelation diagram 
on Table 4. The p and q parameters of ARIMA model are 

determined from the coefficients of partial autocorrelation and 
autocorrelation respectively, comparing them with critical value 

±
2

n
=±

2

4980
=±0.02934 .

From the values of coefficients of partial autocorrelation and 
autocorrelation on Table 4 we see that the value of p will be 
p = 14 or p = 15 or p = 18 or p = 28 or p = 33 and for q will 
be q = 14, or q = 15 or q = 18, or q = 33 or q = 35. Using the 
above values, we choose the best ARIMA (p, 0, q) model from 
the smaller values of Schwarz criterion. Table 5 provides the 
values of p and q.

The results of Table 5 show that ARIMA (33,0,14) model is the 
most suitable for the returns of oil index. In the following Table 6 
we get the estimations of this model.

Given the ARCH effects on the returns of oil price index, we 
proceed with the estimations of hybrid ARIMA-GARCH models to 
examine the volatilities that exist in the related returns of oil price. 
Moreover, from Figure 3 the returns in oil prices show cluster in 
volatility. To catch this cluster we should use ARIMA as well as 
GARCH models. Thus, in the levels this time-series on returns 
of oil prices we have to find out the appropriate hybrid ARIMA-
GARCH model. Estimation parameters’ is held with Maximum 
Likelihood method using the steps of Marquardt’s algorithm 
(1963) and also Broyden-Fletcher-Goldfarb-Shanno algorithm 
optimization. Estimation parameters’ as well as diagnostic tests 

Figure 3: Closing prices, returns and volatility of brent index

Table 3: Descriptive statistics of the returns of brent
Indice Brent
Mean 0.0093
Median 0.0104
Maximum 9.3977
Minimum −10.2945
Standard deviaton 1.1389
Skewness 0.0288
Kurtosis 9.0624
Jarque and Bera 7625.40
Probability 0.000000
Q (24) 54.619*
Observations 4979
*indicate statistical significance at 1%
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of normality, autocorrelation and conditional heteroscedasticity 
are presented on Table 7.

From the Table 7 we can see that the hybrid ARIMA 
(33,0,14)-GARCH (1,1) with normal distribution is the most 
appropriate. All coefficients are statistical significant and there 
seems no problem in diagnostics tests (except normality). 
Persistence gets the value 0.99996 indicating high persistence in 
volatility in the oil price index.

Table 5: Comparison of ARIMA models within the range 
of exploration using Schwarz criteria
Returns of Brent
ARIMA (14,0,14) 3.098784
ARIMA (14,0,15) 3.098888
ARIMA (14,0,18) 3.099006
ARIMA (14,0,33) 3.097087
ARIMA (14,0,35) 3.099275
ARIMA (15,0,14) 3.098691
ARIMA (15,0,15) 3.101659
ARIMA (15,0,18) 3.100680
ARIMA (15,0,33) 3.098897
ARIMA (15,0,35) 3.100866
ARIMA (18,0,14) 3.098830
ARIMA (18,0,15) 3.100695
ARIMA (18,0,18) 3.101842
ARIMA (18,0,33) 3.099034
ARIMA (18,0,35) 3.100882
ARIMA (28,0,14) 3.099227
ARIMA (28,0,15) 3.101020
ARIMA (28,0,18) 3.101108
ARIMA (28,0,33) 3.099381
ARIMA (28,0,35) 3.101431
ARIMA (33,0,14) 3.096988
ARIMA (33,0,15) 3.098987
ARIMA (33,0,18) 3.099104
ARIMA (33,0,33) 3.099902
ARIMA (33,0,35) 3.099255

Table 6: Estimations of the ARIMA (33,0,14) model of the 
returns of Brent
Variables ARIMA (33,0,14)
AR (33) −0.054488 (0.000)
MA (14) 0.058173 (0.000)
SIGMASQ 1.289110 (0.000)
Log likelihood −7697.181
Jarque and Bera 7443.852 (0.000)
Q2 (5) 414.48 (0.000)
X2 (10) 329.4274 (0.000)
X2 (20) 387.4811 (0.000)
X2 (30) 407.5273 (0.000)
AR and MA denote the autoregressive and moving average terms respectively. 
SIGMASQ is the coefficient of variance error. Q2(5)is the Q-Statistic of correlogram of 
squared residuals at fifth lag. X2 is the value of Chi-square of ARCH test and (10), (20), 
(30) are the corresponding lags. P values in parentheses denote probability.

Table 4: Correlogram on the return of oil prices
Autocorrelation Partial correlation S. no AC PAC Q-Stat Prob

1 0.017 0.017 1.3596 0.244
2 0.006 0.006 1.5696 0.456
3 0.005 0.005 1.6877 0.640
4 −0.009 −0.009 2.0574 0.725
5 0.000 0.000 2.0576 0.841
6 −0.029 −0.029 6.3057 0.390
7 0.024 0.025 9.1804 0.240
8 0.008 0.007 9.5011 0.302
9 0.013 0.013 10.340 0.324
10 −0.005 −0.006 10.458 0.401
11 −0.023 −0.023 13.065 0.289
12 −0.011 −0.011 13.654 0.323
13 0.018 0.020 15.226 0.293
14 0.054 0.053 29.679 0.008
15 0.036 0.034 36.041 0.002
16 0.012 0.009 36.787 0.002
17 −0.011 −0.014 37.393 0.003
18 −0.035 −0.034 43.354 0.001
19 −0.013 −0.009 44.149 0.001
20 −0.021 −0.017 46.445 0.001
21 −0.024 −0.024 49.405 0.000
22 −0.013 −0.016 50.268 0.001
23 0.008 0.005 50.574 0.001
24 0.028 0.027 54.619 0.000
25 0.014 0.017 55.558 0.000
26 0.013 0.015 56.405 0.001
27 −0.002 −0.003 56.417 0.001
28 −0.027 −0.032 60.169 0.000
29 −0.008 −0.012 60.483 0.001
30 0.010 0.010 61.023 0.001
31 −0.002 −0.001 61.035 0.001
32 −0.013 −0.011 61.949 0.001
33 −0.053 −0.052 76.224 0.000
34 −0.004 0.000 76.292 0.000
35 −0.031 −0.024 81.064 0.000
36 0.003 0.010 81.100 0.000
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6. FORECASTING

For the forecasting of hybrid ARIMA (33,0,14)-GARCH (1,1) 
model we use both the dynamic and static procedure. The 
dynamic procedure computes forecasting for periods after the 
first sample period, using the former fitted values from the lags 
of dependent variable and ARMA terms. This procedure is 
called n-step ahead forecasts. The static procedure uses actual 
values and not forecasted values of the dependent variable. This 
procedure is called one step-ahead forecast. In the following 
Figure 4, we present the criteria for the evaluation of forecasting 
the returns of oil price using the dynamic and static forecast 
respectively.

The Figure 4 indicates that the static procedure gives better results 
rather than the dynamic because both mean squared error and MAE 
are lower in the static process.

7. DISCUSSION AND CONCLUSION

This paper aims to create a hybrid model combining ARIMA 
model with GARCH models of high volatility in order to analyze 
and forecast the return of oil price. According to various papers, 
the returns of oil prices have unit root, excessive kurtosis and 
negative skewness so they don’t follow the Gaussian distribution. 
Instead, the transformation of Box-Cox was used to smooth the 
data. This resulted in the stabilization of variance and the decrease 
in heteroscedasticity. The empirical results of the paper showed 
that the hybrid ARIMA (33,0,14)-GARCH (1,1) provides the 
optimal results and improves estimation and forecasting in relation 
to previous methods. In conclusion, the combination of robust 
and flexible linear ARIMA models and the power of non linear 
GARCH models in handling volatility and the risk return of oil 
price, made hybrid models to be the most suitable for analysis and 
forecasting of time series.

Figure 4: Dynamic and static forecast of the ARIMA (33,0,14) - GARCH model of the returns of brent

Table 7: Estimates of the ARIMA (33,0,14) - GARCH models of the returns of Brent
Distribution ARCH (1) GARCH (1,1)

Normal t-student GED Normal t-student GED
Mean equation
AR (33) −0.048140* −0.031854* −0.02396** −0.03227** −0.02503** −0.021140
MA (14) 0.055167* 0.059645* 0.051390* 0.043054* 0.046523* 0.045317*
Variance equation
α0

1.070661* 1.051116* 1.015478* 0.002279* 0.001956* 0.002073**
α1

0.176842* 0.232728* 0.204613* 0.055819* 0.041448* 0.047791*
β1

--- --- --- 0.944145* 0.958353* 0.951375*
T-Dist. DOF/GED parameter 4.144466* 1.101958* --- 6.977499* 1.389278*
Diagnostic tests
Persistence --- --- --- 0.99996 0.999801 0.999166
Log L −7558.006 −7231.040 −7239.278 −6982.652 −6879.77 −6889.303
Q2 (20) 399.13* 353.11* 368.90* 21.371 28.79*** 24.18
ARCH (10) 164.15* 148.70* 153.64* 11.391 20.69** 15.37
Jarque and Bera 8807.26* 9342.78* 9181.98* 736.55* 913.20* 816.71*

The persistence is calculated as (α1+β1) for the GARCH model. Log L is the value of the logarithmic likelihood. Q2 (20) is the Q-Statistic of correlogram of squared residuals at twenty 
lag. ARCH (10) represents the F-statistic of ARCH test at 10th lag. *,**,***indicate statistical significance at 1%, 5% and 10% respectively
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