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ABSTRACT

This paper aims to give an overview of the Spanish Electric Market. This energy market is liberalized and complex due the new and modified rules 
along time. Due these circumstances the hourly energy prices may vary tremendously. The goal of this work is to analyze in detail the generation 
technologies, their strategies and energy mix to gain awareness and knowledge to evaluate energy price fluctuations. Two methods are used to forecast 
in different time horizons: ARIMAX and NARX. Both methods are homologous, using historical energy prices and optionally an explanatory variable. 
Three options are studied: No explanatory, energy demand and competitive market. Once the models are developed and trained, the results achieved 
are helpful to understand further changes in the market. These energy forecasts are competent to schedule energy generation and/or consumption.

Keywords: Energy Market, Forecasting, Time Series 
JEL Classifications: C5.1, L1.1

1. INTRODUCTION

The amount of liberalized electricity markets is growing steadily 
worldwide, mainly in Europe. Some of the pioneers in electricity 
market reform have been successfully operating for more than a 
decade (Reikard, 2009; Cervone et al., 2014). This is the case of the 
Spanish Energy Market or “Pool.” In the Spanish Energy Market the 
aggregated electricity power production is balanced in hourly with 
the demand. The electricity is traded in different markets: The main 
market “daily” (D) and the 6 regulation markets “intra-daily” (ID). 
In the daily market the producers and consumer release their bids and 
offers at 12:00 for next day. The ID markets are regulatory markets to 
modify previous agreements on energy consumption or generation. 
These markets take place at: 17:00 (ID #1), 21:00 (ID #2), 01:00 (ID 
#3), 04:00 (ID #4), 08:00 (ID #5) and 12:00 (ID #6); the generators 
can release their bids covering each hour from a few hour after the 
auction time till the end of the auctioned day, as long as that bid 
modifies a previous bid placed in the daily market (OMEL, 2013).

The energy mix is the result of the counter clockwise auction where 
the highest price to purchase energy match the cheapest energy 
offers. This process goes on until the cost of energy offered is the 
same as the price for purchasing from the demand. The lower and 

upper boundaries in the auction are 0€/MWh and 180€/MWh, 
being 40€/MWh an annual average value. Once a break-even point 
is found, the energy price in an hour will be the same and equal to 
the last accepted bid in the auction. For any generator to ensure 
its energy production acceptance in the mix its bid shall be placed 
at the legal minimum, 0€/MWh even though its retribution would 
be the final auction price times the generated energy.

For any energy consumer to assure its purchase of energy its offer 
shall be placed at the legal maximum, 180€/MWh, and again its 
final cost would be the final auction price times the generated 
energy. To keep a stable energy system, the grid operator may 
penalize the generator or the consumer in case that the energy 
generation is different than the agreed after the energy auction by 
charging the cost of the deviated energy.

During the last decade there was an increase of renewable energy 
power plants. This was motivated due the subsidies promoting the 
construction of green power plants (Monteiro et al., 2013) and 
the price increase of energy generated from fossil fuels. These 
boundaries created an scenario where the installation of renewable 
was profitable business (Monteiro et al., 2013). Such expansion 
and the policies adopted by many countries to integrate renewable 
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into the energy generation mix has brought a rearrangement on 
the energy market (Rubin and Babcock, 2013).

The integration of energy generated by green power plants into 
electric power system is priority, meaning that this power should 
be fed into the system in preferential order within the energy mix. 
In certain cases as solar and wind power its cheap generation cost 
(if not free) allows renewable energy bids to be placed close to the 
legal minimum (0€/MWh) on the energy auction which assures 
its acceptance on the mix.

Nevertheless, the volatility and variability of the renewable 
resource makes the integration in the grid difficult as the supply 
and load of electric power must be balanced at every instant. 
This is a major drawback for technologies harvesting electricity 
out from volatile resources is the non-continuous availability of 
the resource. Solar energy depends critically on the variability 
of irradiance (Flake and Mueller, 2004), typically cloud covers 
cause rapid changes in the irradiance during the day (Chen et al., 
2011) which brings along generation fluctuations. In the same way 
wind energy generation depends on the wind direction, speed and 
its variations (Cassola and Burlando, 2012). This dependence on 
weather conditions may lead to wrong or inaccurate bids from the 
generators in the energy auction and therefore into penalties from 
the grid operator. An accurate bid would minimize the penalties 
for wind and solar generators who have to rely on energy forecasts 
(Lange and Focken, 2006; Mahoney et al., 2012; Yang et al., 2012; 
Perez-Mora et al., 2015; Perez-Mora et al., 2016b).

Moreover, this energy variations bring along fluctuations in 
hourly energy prices. This variations influence as much energy 
generators as consumers. Therefore, energy prices are required to 
be forecasted in markets with high renewable energy penetration 
(Perez-Mora et al., 2016a; Pérez-Mora et al., 2017; 2018). Several 
forecasting methods have been used for such purpose, a literature 
survey is presented in (Alfares and Nazeeruddin, 2002).

This paper applies two different approaches to forecast energy 
hourly prices in different time horizons. The first method is based 
on auto regressive integrated moving average (ARIMA) and second 
is based on artificial neural networks (ANN). Both methods can 
be supported with explanatory variable, in particular, the methods 
are ARIMA with eXplanatory variable (ARIMAX) and nonlinear 
autoregressive models with eXogenous NN (NARX). Explanatory 
variables are related time series to the target time series which have 
proved to improve accuracy on energy price forecasts. Prove of this 
accuracy can be found in (Amjady, 2006; Andalib and Atry, 2009; 
Alomar et al., 2016) for computational models such as in ANN 
or in (Contreras et al., 2003; Conejo et al., 2005) for regression 
models such as ARIMA. This work aims to evaluate the forecasting 
results of both methods without explanatory variable and with two 
different time series related to the energy price.

This paper is organized as follows: Next section provides an 
overview of the problem to approach. Section 3 the methodology 
used to approach the problem is explained. Section 4 presents the 
results obtained from the methodology and the conclusions from 
those would be given in Section 5.

2. PROBLEM DESCRIPTION

The energy mix in Spain is shared among different technologies. 
It is visibly divided between new installations based on renewable 
technologies and existing installations mainly based on fossil 
fuels. The power installed and the energy mix of the different 
technologies on 2016 can be seen on Table 1 (REE, 2016). 
Biomass, bio-gas, geothermal and marine hydraulic technologies 
are included under “Other Renewable.”

Currently, the total annual energy consumption is 262.8TWh and 
the maximum demanded power on 2016 was 40.489MW. The 
demand proceeding from renewable energy sources cover a 41.1% 
of the total energy consumption. This generation is unstable and 
changing with time which affects directly on the energy market 
price.

In this section the main factors affecting the energy price and their 
causes are described and evaluated.

2.1. Wind Generation
Wind power is a promising technology which has reached market 
competitiveness without the help of subsidies in the Spanish market.

As shown in Table 1 the installed power is equal to 23.02GW 
corresponding to a 21.9% of the total energy mix. In Figure 1 the 

Table 1: Spanish energy mix on 2016
Technology Energy (GWh) (%) Power (MWh) (%)
Hydro power 39.053 (14.9) 20.354 (19.3)
Wind Power 48.927 (18.6) 23.020 (21.9)
Photovoltaic 7.979 (3.0) 4.669 (4.4)
Solar thermal 5.102 (1.9) 2.300 (2.2)
Other renewable 3.451 (1.3) 748 (0.7)
CHP 25.878 (9.8) 6.714 (6.4)
Nuclear 55.546 (21.1) 7.573 (7.2)
Coal 37.038 (14.1) 10.004 (9.5)
Fuel/gas 6.748 (2.6) 2.490 (2.4)
Combined cycle 29.787 (11.3) 26.670 (25.3)
Waste 3.324 (1.3) 754 (0.7)
Total 262.852 105.307

Figure 1: Map of wind installations in Spain by power
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wind installation distribution in Spain are shown. The map shows 
the location and size of the installation in a color-size map, the 
maximum installed power by law is 50MW.

Wind energy is completely dependent on wind speed, but when the 
resource is available the generation is considered free. Therefore, 
the energy producer places energy bids on the market ensuring 
the energy will be accepted and matched. As the only expense 
wind power incurs is Operation and Maintenance (O and M), the 
strategy for bidding usually attempts to cover such costs which 
generally are under 5€/MWh.

The fact that a great part of the energy share is wind dependent 
brings an enormous impact on the energy grid and market prices. 
Wind is a highly variable resource; wind power varies from a 
minimum of 250MW to a maximum of 17.3GW, reaching peaks of 
production which may imply over 67% of the total injected power 
into the grid. Wind power does not necessarily follow the seasons, 
per se, but an annual trend line. In 2016 wind power was the 
second energy producer in the Spanish energy mix with a 18.6%.

The impact of wind power due its variations is reduced with help 
of energy forecasters. The main forecasting difficulty is the error 
in wind speed estimation and the lack of information on wind farm 
layouts. This disables the use of wind direction to estimate power 
decrease due shadowing between turbines.

2.2. Solar Generation
Solar power is a common technology in Spain due the high amount 
of irradiation on the country. Moreover, Spain led worldwide solar 
power development and installation on the previous decade.

As shown in Table 1 the installed total solar power is equal to 
6.97GW which corresponds to a 6.6% of the total energy mix. 
These figures come from the sum of photovoltaic and solar thermal 
installations. In Figure 2 the solar installation distribution in Spain 
are shown. The map shows the location and size of the installation 
in a color-size map, the maximum installed power by law is 50MW. 
In Figure 2 solar thermal installations are easily identifiable as 
they are usually over 40MW.

Solar energy is completely dependent on solar irradiation, but when 
the resource is available the generation is considered free. In the 
same way as wind producers, solar producers place energy bids 
on the market ensuring the energy will be accepted and matched. 
Their strategy for bidding usually attempts the minimum energy 
market price which is 0€/MWh.

Similarly to wind energy the dependence on climate bring 
uncertainty to energy market which can be attenuated with energy 
forecasting.

The importance on forecasting energy generation lies in the 
markedly difference on generation between stations changing from 
a 7.5MW of power peck in winter to a 5.600MW of power peck 
in summer and achieving a maximum of 25% in the total power 
injected into the grid. It is also important to understand that the 
solar electricity generation in Spain includes two technologies 
able to produce electricity:
• Photovoltaic. Ground mounted or in trackers.
• Solar thermal power. Based on concentrated solar power.

It is important to bear in mind that the solar electricity generation 
coming from photovoltaic is only dependent on the solar 
irradiation on the panel surface. On the other hand, solar thermal 
plants generate electricity through a process dependent on solar 
irradiation and temperature. Additionally, some of these power 
plants count with an energy storage system.

2.3. Nuclear Power
Nuclear generation is continuous over time. Nuclear power plants 
generate on its nominal power as long as they are running. This fact 
is only modified on the times when they start up and shut down 
to re-charge fuel. As the generators can’t be stopped (unless there 
is a critical situation) this technology bidding strategy is the legal 
minimum, 0€/MWh. Therefore, it is ensured the offer is accepted 
and its energy is consumed.

On the Spanish territory there are 7 working nuclear power plants, 
all of them slightly over 1.00GW nominal power and an extra 
power plant currently out of duty of 466MW. The total nuclear 
working power is equal to 7.10GW generating a 21.2% of the 
total annual demand. In Figure 3 nuclear power plants are shown 
in the Spanish territory.

2.4. Hydro Power
The hydro power is divided in two groups. The first group are 
large hydro power constructed years ago. Their nominal power are 
above 50MW, the installation usually comprise a dam and are fully 
manageable. They are equipped with backwards pumping, and 
therefore, the possibility to charge the dam using the pumps. This 
allows to stabilize the energy demand acting as generator during 
high demand periods and as consumer during low demand periods.

The second group are smaller installations, always below 50MW, 
without neither dam or re-charging capacity. The generation of 
this group of installations are dependent on the water flow passing 
on the river where they are installed.

Figure 2: Map of solar installations in Spain by power
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In Figure 4 the hydro power installation distribution in Spain are 
shown. The map shows the location and size of the installation 
in a color-size map. The total hydro power from both groups is 
equal to 20.35GW generating a 14.9% of the total annual demand.

The generations strategies of the two groups are completely 
different. As the first group is regulable they generate when the 
energy prices are higher to obtain higher profits. On the other 
hand, the second group is offering energy bids to cover their O 
and M expenses as they would generate anyway and try to get the 
energy bid accepted.

2.5. Combined Heat and Power (CHP)
CHP refers to installations which transform fossil fuels into heat 
and power with high efficiency. These installations are tied to a 
thermal client to sell the thermal energy as they generate electricity. 
Therefore, their generation strategies depend on the client’s 
thermal demand as their generation cost differs and so does the 
energy bid they place on the market.

In Figure 5 the CHP installation distribution in Spain are shown. 
The map shows the location and size of the installation in a color-
size map, the maximum installed power by law is 50MW. CHP 
power currently installed is equal to 6.71GW generating a 6.4% 
of the total annual demand. In Figure 5 the location of the power 
plants are shown in Spain.

2.6. Conventional Thermal Generators
Conventional thermal generator is refereed to an installation 
which produce power using conventional generation techniques. 
These installations burn fuel to produce electricity through the 
movement of a generator. This category includes installations 
burning fuel such as:
• Coal
• Fuel and gas
• Wastes.

The technologies included here in reference to Table 1 are the 
above-mentioned fuels plus combined cycle. Conventional thermal 
generators can generate energy at will since the primary energy 
used in the combustion is stored nearby the power plant. Therefore, 
the generation strategies followed depend on the energy market 
and they generate when the energy prices are high enough to cover 
expenses and make benefits.

3. METHODOLOGY

This section describes the methodology followed to forecast energy 
market prices. Accurate energy price forecasts can be obtained 
using computational models such as NN or ARIMAX. Both 
forecast model performances may be improved by using a sufficient 
data series containing relevant information related with the main 
variable. This information is refereed as explanatory variable.

3.1. ARIMAX
This regression model is fitted with the target time series data. 
This model may use an extra time series providing information 
to improve its performance when predicting future values on the 

target time series. It is composed by an autorregresive model 
(p), moving average model (q) and differencing degree (D). 
Mathematically, it can be expressed as: ARIMA (p, D, q).

For ARIMAX forecasting the data is split in training set, 95%; 
and result comparison set, 5%. The configuration proposed 

Figure 3: Map of nuclear installations in Spain by power

Figure 4: Map of hydro power installations in Spain by power

Figure 5: Map of combined heat and power installations in Spain by 
power
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differs from weekday, Saturday and Sunday. The best performing 
configurations are shown in Table 2; where “MA,” stands for vector 
of non-seasonal moving average coefficients; “SMA,” stands for 
vector of seasonal moving average coefficients corresponding to 
an invertible polynomial; “AR,” stands for vector of non-seasonal 
autoregressive coefficients; “SAR,” stands for vector of seasonal 
autoregressive coefficients corresponding to a stable polynomial; 
and “D,” stands for integer indicating the degree of the non-
seasonal differencing in the time series.

3.2. NARX
The other proposed approach to the problem is using (ANN). These 
are found to outperform the regression models when it comes to 
high resolutions (Reikard, 2009). There are several ANN models 
that approaches forecasting, in this work a NARX model is selected 
since they outperform other ANN models as multi layer perceptron 
(Perez-Mora et al., 2015).

NARX model relates the current value of a time series to current 
and past values of the influencing exogenous series. This approach 
based on ANN allow to find next values in a time series using past 
measurements of price and an explanatory variable. These are used 
as inputs to an autoregressive model with exogenous input (ARX) 
building like this a NARX recurrent NN. Many NN configurations 
have been tried out to forecast energy price. The best performing 
set of configurations are shown in Table 3.

The data is split randomly in three different sets: Training 70%; 
validation to avoid over fitting 15%; result comparison and testing 
15%. The training method used is Lavenberg-Marquardt algorithm. 
The best performing tried methods and ANN configurations are 
shown in Table 3. Neurons per layer values correspond to: Input, 
hidden and output layers. Activation functions stand for: “L” 
Linear; “ST,” Sigmoid Tan-gent and “I” Input layer. The proposed 
input and feedback delays vary from weekday, Saturday or Sunday 
but not the configuration.

3.3. Explanatory Variable
To improve the performance of energy price forecast a suitable 
explanatory variable could be used in both methods. In principle 
and due the relation between demand and price suggests using the 
demand as explanatory variable. On the other hand, an as seen in 
section 2, the demand is not the only factor related with energy 
price. The energy price is built when matching the energy bids and 
the demand. Therefore, the price requested in the generation bids is 
as important as the amount of demand and the price offered for it.

In the energy market it is possible to discern between two kinds 
of generators: Manageable and not-manageable. The first kind can 
generate depending on the price and therefore, they match in the 
energy auction whenever certain economic boundaries are met. 

On the contrary, the not-manageable power plants are willing to 
generate no matter selling conditions. This is motivated due the 
need of most of them to generate that power. These technologies 
are: Solar, wind and nuclear power. The behavior of the not-
manageable power plants affects the final auction price as their 
energy bids are close to 0€/MWh so the energy is matched.

When considering this fact, another explanatory variable can be 
considered. This variable is calculated as the energy which is 
going to be produced regardless economic boundaries is subtracted 
from the total energy demand. This amount of energy is what is 
left for manageable generators to match and can be defined as 
“competitive market” and is defined in equation (1).

Competitive Market = Demand-Solar-Wind-Nuclear (1)

In this work three options are studied to understand the impact of 
an explanatory variable on forecasts:
1. No explanatory variable
2. Energy demand as explanatory variable
3. Competitive market as explanatory variable.

Pearson correlation study is carried out for the two explanatory 
variables on the historical values of the year 2016 to find out which 
one seems more suitable to be used in energy price forecasting. The 
results of relation between energy price and demand are shown in 
Figure 6 with a Pearson correlation factor of 0.412. The results of 
relation between energy price and competitive market are shown 
in Figure 6 with a Pearson correlation factor of 0.719.

The relation shown for competitive market and energy price is 
much higher than the relation with the demand. Even the relation 
is not perfect, and far to be close to 1 (meaning a perfect and direct 
relation), it is supposed to be a better support in forecasting for 
both methods and should improve the forecasting accuracy.

3.4. Forecasting Horizon
In this work 6 days ahead are forecasted. The methodology applied 
is to consider the forecasted days as part of the historical values 
when forecasting a later day. Therefore, to do the last forecast, 
6 days ahead, the target vector would use the historical values plus 
the last 5 days obtained from forecasts. This methodology will 
show the impact of forecasted days on future forecasts.

3.5. Error Comparison
To evaluate the forecasting methods performance, the following 
error metrics are used. The first error metric is mean absolut error 
(MAE). This error metric shows the deviation of the forecast to the 
real value as absolute difference. This figure is useful to understand 
the accuracy of the forecast method. The error metric is expressed 
in equation (2) in €/MWh.

Table 2: ARIMAX configuration
Variable Weekday Saturday Sunday
AR lags [1,2,6,24,25,73] [1:2,5:8,17,21,24] [1:3,5:7,9,17:21,24]
MA lags [1:8] [1:24] [1:24]
SAR lags [120,121,194,218,220] [25,26,32,48:51,68,73,95,97] [25,26,35:36,43:45,48:50]
SMA lags [25:29, 46:49] [25:29, 46:49] [25:29, 46:49]
D 0 0 0
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The second selected metric is mean absolut percentage error 
(MAPE). This error metric divides the absolute deviation by 
market upper boundary. As mentioned before the maximum 
energy price by market definition is 180€/MWh. The error metric 
is expressed in equation (3) as a percentage and it is useful to 
understand the impact of the error in further energy strategies.

In equations MAE and MAPE Pr(i) is the real market value, Pf(i) 
is the forecasted market value and Pmax is the maximum market 
energy price; all of them measured in €/MWh.

MAE = |Pr(i)-Pf(i)| (2)

(i) (i)Pr -Pf
MAPE= 

Pmax  (3)

4. RESULTS

In this section the results from both forecasting methods and the 
three explanatory variable options are shown and compared. The 
period under study covers from 1/1/2016 to 31/12/2016. Different 
time horizons in forecasting are studied covering from 1 to 6 days 
ahead. To compare both forecasting methods several combinations 
and configurations of ARIMAX and NARX models have been 
tried out to obtain the most accurate results but only the best 
performing are shown.

In Table 4 the results of MAPE for D1, corresponding to 1 day ahead 
till D6 corresponding to 6 days ahead are shown. In Figure 7 the 
results for MAE are plotted to visually compare how both methods 
perform and compete along the time horizon forecasted. It is possible 
see that ARIMAX method outperforms NARX method. Figure 7 
shows how the error increases with the length of time horizon.

5. CONCLUSIONS

In this work an energy market forecasting tool has been developed 
to obtain hourly market prices. The tool is based on two forecasting 
methods: ARIMAX and NARX. In both methods a study is 
conducted to understand the influence in performance of the 
explanatory variable. The options used are: No explanatory, energy 
demand or competitive market as explanatory variable.

The forecasting methods are tested in different time horizons, from 
1 day ahead to 6 days ahead. This evaluation is done to evaluate the 
impact on accuracy of time. Once the forecasts are compared with 
the error figures, the results point that the proposed ARIMAX method 
outperform NARX is most of the cases. The lower average MAE 
achieved is 4.78€/MWh given by ARIMAX model in 1 day ahead 
forecast and using competitive market as explanatory variable. The 
highest average MAE achieved is 8.19€/MWh given by NARX model 
in 6 days ahead forecast and using demand as explanatory variable.

The best resulting explanatory variable option is competitive 
market, followed closely by the no explanatory variable option. 
On the other hand, using demand as explanatory variable is 
counterproductive being this the worst option. This fact is due the 
low correlation between the variable and the target vector (0.41). 
Despite that competitive market is the best option, these results are 
obtained with historical values and no forecast error is included or 
evaluated. In reality, the competitive market variable is a forecasted 
variable, composed by the forecasts of demand, solar, wind and 
nuclear energy which are subjected to errors.

In the same way, the results show the influence of the time horizon 
on forecasting accuracy. The longer the time to the forecasted value 
the higher the error is. The influence of time is different in the 
forecasting methods. When comparing the two best performing 
explanatory variable options, ARIMAX increases the MAE on an 
average daily base of 0.23€/MWh, meanwhile, NARX increases 
the error on an average daily base of 0.06€/MWh. Therefore, 
NARX method is much less sensible to errors in forecasted days. 
In Figure 7 both error trends are shown. For ARIMAX method the 
change from one to 2 days ahead forecast is the largest increase 
of error going from 2.88% to 3.22%.

Figure 6: Correlation between target variable and explanatory variable

Table 3: NARX configuration
Variable Configuration
Neurons per layer 48-24-1
Activation Function I-ST-L
Gradient 5×10−9
Epochs 200

Table 4: MAPE forecasting results
Day Ahead Ex #1 

ARIMAX (%)
Ex #2 

ARIMAX (%)
Ex #3 

ARIMAX (%)
Ex #1 

NARX (%)
Ex #2 

NARX (%)
Ex #3 

NARX (%)
D1 2.88 3.60 2.65 3.69 3.95 3.51
D2 3.22 3.73 2.61 3.71 4.06 3.51
D3 3.36 3.89 2.80 3.80 4.07 3.66
D4 3.57 3.83 2.67 3.79 4.12 3.67
D5 3.60 3.91 2.75 3.80 4.39 3.63
D6 3.62 4.26 3.19 3.85 4.55 3.70
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For a practical use on 1 day ahead forecast the no explanatory 
variable option would, most likely be, the most accurate method. 
This is motivated due the small error difference between no 
explanatory and competitive explanatory options (2.88–2.65%) 
and the fact that the error impact in forecasting the explanatory 
variable would be avoided. On the other hand, ARIMAX method 
with no explanatory variable is the most sensible method to time 
horizon with a daily error increase of 0.27€/MWh.

The results show a better performance of ARIMAX over NARX 
method in all explanatory variable options. This is due a higher 
number of occurrences of low errors in ARIMAX method which 
result on a lower annual error average.

Both methods show accuracy enough to be used as reliable 
forecasting tool. They show dependence on the time horizon but 
there is not much effect on accuracy and even mid-term forecast 
could be considered useful for power generators and consumers.
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