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ABSTRACT

This study examines the relationship between oil prices and food prices, with a focus on key agricultural commodities in the United States, including 
corn, soybeans, wheat flour, meat, and milk. Using a regime-switching cointegration approach, the research investigates both the long-term and short-
term dynamics of oil’s impact on food prices. The findings indicate that oil prices exert an asymmetric influence on the food market. While oil prices 
play a relatively limited role in determining certain production costs, particularly for meat, compared to other economic factors, they nonetheless 
hold strong predictive power for food price forecasts. Notably, any short-term disequilibria in prices prompt a rapid adjustment back to equilibrium, 
contributing to market stability. The study suggests that Gulf Cooperation Council (GCC) countries, which rely heavily on food imports, can leverage 
their energy resources to alleviate the inflationary pressures in food markets resulting from global demand increases. A key long-term strategy involves 
investing in energy-intensive agricultural technologies, such as desalination for water supply and controlled-environment agriculture (e.g., greenhouses), 
underscoring the need for strategic foresight and comprehensive planning in agricultural investments.

Keywords: Oil Market, Food Market, Gulf Cooperation Council Countries, Regime-Switching Cointegration 
JEL Classifications: Q1, Q4, C1, C5

1. INTRODUCTION

Many wealthy nations, including the Gulf Cooperation Council 
(GCC) countries, consider agricultural products a priority for 
national security. Consequently, ensuring a stable food supply is 
a crucial factor in policy decision-making. However, the prevalent 
assumption that oil-exporting countries benefit uniformly from 
positive oil price shocks may foster a false sense of security. If oil 
price shocks influence the output market, including food, rising 
inflation could erode the earnings of GCC countries, which import 
the majority of their food products. In such cases, immediate 
action by GCC policymakers is essential to stabilize markets and 
safeguard food security.

The food market has experienced substantial price increases over 
time, driven by both supply and demand factors. On the demand 
side, economic growth and rising incomes in developing nations 
have significantly increased demand. Additionally, population 
growth has contributed to inflationary pressures in the food market. 
From the supply side, limited resources, such as land and water, 
are critical factors. However, energy costs, particularly oil prices, 
play a central role in food storage and transportation, directly 
influencing production costs. Through associated factors—such 
as fertilizers, machinery, labor, and raw materials—the oil market 
affects a range of inputs critical to the food production process.

Recent studies substantiate the inflationary impact of positive oil 
price shocks, using conventional econometric methods including 
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OLS (Gilbert, 2010), VAR (Su et al., 2019), VECM (Zhang and Qu, 
2015), and GARCH models (Cabrera and Schulz, 2016). However, 
existing literature often overlooks the nuanced effects of supply 
and demand dynamics on agricultural prices. For example, Tyers 
and Golley (2014) argue that oil price impacts on food prices are 
intensified by protectionist trade policies, which constrain food 
availability by limiting imports and exports in response to global 
oil price fluctuations. Similarly, Arezki and Brückner (2011) 
demonstrate that rising global oil prices substantially affect food 
prices in importing nations due to increased costs of agricultural 
inputs and transportation. These findings underscore the need for 
a differentiated approach that considers the dual influences of 
demand and supply factors on food prices.

Furthermore, Rezitis (2015) highlights that the relationship 
between oil prices and agricultural commodity prices is influenced 
by direct input costs and biofuel production, linking more closely 
to oil prices during periods of high demand for alternative energy 
sources. This relationship is often underexplored but is especially 
relevant for countries heavily dependent on imported energy.

Given that the food market is inherently sensitive to oil price 
fluctuations, understanding how oil price volatility impacts the 
food sector, especially for GCC countries, is crucial. There is 
a lack of comprehensive research on how oil price increases 
asymmetrically affect food costs and the broader implications 
for food security. Addressing this gap is essential for developing 
strategies that can mitigate the risk of food price inflation in oil-
exporting economies reliant on food imports.

This paper investigates the effect of oil prices on the supply side 
of the food market, analyzing the inflationary pathway through 
the producer price index to assess whether oil price fluctuations 
asymmetrically influence food market variations. Differentiating 
between demand-side and supply-side effects is essential, as 
demand factors depend on consumer behavior, while supply factors 
are closely linked to production structures. By examining the 
specific mechanisms through which oil prices affect food prices, 
this study aims to provide a more nuanced understanding of the 
interplay between these critical sectors.

The insights gained from this research are particularly relevant for 
GCC policymakers who must balance energy wealth with food 
security. The study’s findings could inform strategic investments 
in agricultural technologies and policies that can help mitigate the 
adverse effects of oil price volatility on food costs. By focusing 
on controlled-environment agriculture and efficient water supply 
systems, GCC countries might leverage their energy resources 
to create a more sustainable food system, ultimately supporting 
long-term economic stability.

The paper is structured as follows: The Introduction sets the 
context, objectives, and significance of the study. Section 2 
reviews relevant literature on oil-food price dynamics. Section 
3 details the methodology, focusing on the regime-switching 
cointegration approach. Section 4 presents empirical results, and 
Section 5 concludes with key findings, policy implications, and 
recommendations for future research.

2. THE LITERATURE REVIEW

This review examines the interconnection between food and oil 
prices, focusing on the complex dynamics that link these two 
essential global commodities. The relationship between food 
and oil prices has been widely analyzed across diverse fields, 
including economics, agricultural science, and environmental 
studies. Understanding this link is crucial, given its significant 
implications for inflation, economic growth, poverty alleviation, 
and food security—particularly in developing nations. This review 
emphasizes key theoretical frameworks, evaluates empirical 
evidence, and identifies major factors that influence the interaction 
between food and oil prices.

2.1. Theoretical Frameworks
2.1.1. Cost-push inflation and input cost theory
One of the earliest and most intuitive theories linking oil prices to 
food prices is the concept of cost-push inflation. Oil is a critical 
input in agricultural production, both as a fuel source and as a 
primary component in producing fertilizers and pesticides. When 
oil prices increase, agricultural production costs rise accordingly, 
resulting in higher food prices. Studies such as Baffes (2007) 
highlight that food production is highly energy-intensive, with 
oil prices directly influencing costs across the agricultural supply 
chain, from transportation to processing.

2.1.2. Biofuel demand and food price linkage
Another pertinent theory explores the competition between food 
crops and biofuel production. As oil prices rise, biofuels become 
a more attractive alternative energy source, leading to increased 
demand for crops like corn, sugarcane, and palm oil. The “food 
versus fuel” debate has been extensively discussed in works by 
Mitchell (2008) and Tyner (2010), who argue that rising oil prices 
can divert agricultural resources from food to energy markets, 
driving up food prices.

2.1.3. Transmission mechanisms and price pass-through
Various transmission mechanisms—such as exchange rates, 
market speculation, and government policies—further complicate 
the food-oil price relationship. The “pass-through” effect, 
whereby increases in oil prices translate into higher food prices, 
is influenced by factors like market structure and the level of 
global supply chain integration. According to Nazlioglu and 
Soytas (2011), the price pass-through may be more pronounced 
in economies heavily reliant on food and oil imports.

2.2. Empirical Evidence on Food and Oil Price 
Correlation
Empirical literature presents mixed findings on the strength and 
consistency of the food-oil price relationship.

2.2.1. Historical correlation studies
Numerous studies identify a positive correlation between oil and 
food prices, especially during periods of high oil price volatility. 
Baffes and Haniotis (2010) and Zhang et al. (2010) show that 
between 2000 and 2008, food and oil prices were closely 
associated, influenced by factors such as the 2007-2008 financial 
crisis and the subsequent expansion in biofuel production.
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2.2.2. Cointegration and causality analysis
To analyze long-term relationships, several studies use 
econometric models, such as cointegration and Granger causality 
tests. Nazlioglu and Soytas (2012) found evidence of cointegration 
between oil and food prices, especially over the long term, while 
Serra et al. (2011) demonstrated that oil price shocks have a 
significant, though asymmetric, effect on food prices, with upward 
oil price shocks causing more pronounced changes than downward 
shocks.

2.2.3. Nonlinear and asymmetric relationships
More recent studies investigate nonlinear and asymmetric 
relationships between food and oil prices. For example, Avalos 
(2014) found that oil price spikes have a substantially greater 
impact on food prices than oil price declines. Similarly, Zhang 
and Qu (2015) employed threshold models to show that oil prices 
influence food prices more significantly during periods of high 
oil price volatility.

2.3. Factors Influencing the Nexus between Oil and 
Food Prices
2.3.1. Biofuel policies
The growth of biofuels, particularly following policies like the U.S. 
Renewable Fuel Standard (RFS) and the EU’s Renewable Energy 
Directive, has significantly influenced the dynamics between oil 
and food prices. Studies such as Ciaian and Kancs (2011) argue that 
biofuel policies create a structural link between energy and food 
markets, increasing food prices’ sensitivity to oil price fluctuations.

2.3.2. Exchange rates and monetary policy
Exchange rates are critical in the food-oil price nexus, as many 
commodities are priced in U.S. dollars. Changes in the dollar’s 
value affect both oil and food prices. According to Reboredo 
(2012), U.S. dollar depreciation can raise food and oil prices 
by increasing import costs for non-U.S. countries. Central bank 
policies, particularly those targeting inflation, also shape this 
relationship.

2.3.3. Supply shocks and market speculation
Supply shocks—such as droughts, floods, or geopolitical 
tensions—can intensify the relationship between oil and food 
prices. Market speculation in futures markets is another influential 
factor; Tang and Xiong (2012) found that the financialization of 
commodity markets has strengthened the correlation between food 
and oil prices, especially during speculative bubbles.

2.3.4. Climate change and environmental policies
Climate change and environmental policies intersect with the 
food-oil price nexus, as efforts to reduce carbon emissions and 
transition to greener energy sources impact both food production 
and energy consumption. Meyers and Kent (2019) discuss how 
these policies influence agricultural and energy markets.

2.4. Geographic and Sectoral Heterogeneity
The strength of the link between food and oil prices varies across 
regions and sectors. Studies focused on developing countries, such 
as Baumeister and Kilian (2014), argue that these economies are 
more vulnerable to the effects of rising oil prices on food costs, 

particularly in regions where agriculture is less mechanized and 
more dependent on crude oil imports. Conversely, developed 
countries may show less sensitivity due to diversified energy 
sources and advanced agricultural technology.

2.5. Policy Implications and Future Research
Understanding the oil-food price nexus holds significant 
implications for policymakers, especially regarding food security 
and energy policy. For instance, Abbott et al. (2009) suggest that 
governments should implement policies to mitigate the adverse 
effects of rising oil prices on food costs, such as promoting 
alternative energy sources or enhancing agricultural productivity. 
Furthermore, there is a need for continued research to understand 
how emerging trends, such as the adoption of electric vehicles, 
climate change, and technological advancements in agriculture, 
may reshape the historical relationship between oil and food prices.

3. METHODOLOGY

Since “the U.S. has long been a superpower in food markets, and it 
is still one of the world’s largest food exporters,” we consider the 
United States the leading pilot country to scrutinize the inflation 
pass-through from the oil market to the food market supply.

We consider the inflation path through the producer price index of 
corn, wheat flour, soybean, milk, and meat from the oil prices and 
other commodities. We estimate the model as follows:

ppit = θ0 + θ1 oilt + θ2 cpit + εt (1)

Where ppi is the logarithm of the producer price index, oil is the 
logarithm of the oil prices, and cpi is the logarithm of the consumer 
price index less food and energy (other commodities inflationary 
effect on the producer price index).

We postulate that the ppi response to the oil market upturns (oilt
+ ) 

and downturns ( oilt
− ), is not a simple log-linear but a nonlinear 

procedure. In other words, we have partial sums of the positive 
and negative changes in the oil prices (to improve the model 
performance we also add the asymmetry effect of the consumer 
price index in some cases).

Therefore, we modify the model as follows:

0 1 2 3θ θ θ θ ε+ −= + + + +t t t t tppi oil oil cpi  (2)

Where oilt
+  and oilt

−  are partial sums of positive and negative 
changes in the oil prices. The model decomposes negative and 
positive values, defining partial sums of the variable as the 
cumulative sum of prior positive (negative) values at any given 
point, considering zero for values other than positive (negative):
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The NARDL model (Shin et al., 2014) features a regime-switching 
cointegration relationship, with the sign of the decomposed 
variable determining the regime transition. This suggests that the 
model’s equilibrium may not be singular, allowing for various 
stable states depending on the regime active. We utilize the method 
as follows:

( )
0 1 1 1 2 1 3 1

,1 0

α δ δ δ δ

γ ϑ ϑ ϑ ε

+ −
− − − −

+ + − −
− − − −= =

∆ = + + + + +

∆ + ∆ + ∆ + ∆ +∑ ∑
t t t t t

p q
t i i t i i t i e i t i ti i

ppi ppi oil oil cpi

ppi oil oil cpi
 (5)

The Autoregressive Distributed Lag (ARDL) approach, introduced 
by Pesaran and Shin (1999), incorporates both the past and current 
values of explanatory variables (distributed lag) and the past 
values of the dependent variable (autoregressive component) 
into the model. This methodology enables the construction of 
a dynamic model that allows short-term adjustments toward a 
long-term equilibrium. Importantly, the ARDL method differs 
from traditional cointegration approaches, such as the Vector 
Error Correction Model (VECM), which requires all explanatory 
variables to be integrated of order zero, I(0), or one, I(1). In 
contrast, the ARDL model can accommodate variables that are I(0), 
I(1), or a combination of both, without requiring the explanatory 
variables to be strictly exogenous.

This flexibility provides a notable advantage over other 
cointegration methods that typically do not allow for endogenous 
explanatory variables, often complicating efforts to address 
endogeneity issues. Endogeneity within the model may lead to 
serial correlation, which can skew estimates and compromise the 
reliability of hypothesis testing. Pesaran and Shin (1999) mitigate 
this potential bias by incorporating lagged values of the dependent 
variable as instrumental variables, reducing the impact of serial 
correlation.

Moreover, the ARDL approach has shown empirical superiority 
over other methods, such as dynamic ordinary least squares 
(DOLS), fully modified ordinary least squares (FMOLS), 
and maximum likelihood estimation (MLE). Specifically, the 
ARDL model, by using ordinary least squares (OLS) estimation 
techniques, provides consistent estimates even with small sample 
sizes, as demonstrated by Panopoulou and Pittis (2004).1

Despite its strengths, the ARDL method has certain limitations. 
Issues such as excessive aggregation, sample-specific omitted 
variables, and measurement errors correlated with the regressors 
can sometimes yield economically implausible coefficients. In 
this regard, our analysis suggests that nonlinear relationships 
between variables may also contribute to the occurrence of these 
implausible coefficients, indicating deviations from the outcomes 
typically expected under the linear ARDL framework (Pesaran 
et al., 2001). This observation underscores the need for further 
research into the complexities of the ARDL model when applied 
to specific economic datasets.

1 For empirical comparison and the ARDL performance, see Ebadi, 2020, 
2022, Ebadi and Are 2023, and Ebadi and Razaq 2024.

In the NARDL model, while θ δ
δ1
1

0

=  and θ δ
δ2
2

0
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long-run effect of the oil market upturns ( )oilt
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 detect the short-run 

dynamics of the effect of the oil market on the producer price 
index.

The ARDL model is inapplicable if an I(2) variable is present, as 
the cointegration bounds test is invalid in such cases. However, the 
model can still be employed when variables are I(0), I(1), or a mix 
of both. To confirm the absence of I(2) variables in the model, we 
apply the Dickey and Fuller (1979) stationarity test. The Akaike 
Information Criterion (AIC) is then used to determine the optimal 
lag length for both the dependent and explanatory variables, with 
a maximum of eight lags considered.

An additional benefit of the NARDL model is its dynamic 
multiplier, which enables examining the effects of both positive 
and negative shocks. These multipliers are defined as follows:
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We propose that oil prices and the consumer price index (excluding 
energy and food) positively influence the producer price index of 
selected agricultural products. However, the exact extent of these 
impacts is still uncertain. Furthermore, considering the influence 
of domestic and global factors on the oil and food markets, we 
believe that oil prices hold significant predictive power for the 
food market.

4. EMPIRICAL RESULTS

We analyze quarterly data from 1993 to 2024 to examine the 
impact of oil prices on production costs for corn, soybeans, wheat 
flour, milk, and meat in the United States. Depending on data 
availability and model performance, we utilize distinct datasets 
for each agricultural product. For corn and soybeans, we employ a 
cointegration model using the export price index, while for the other 
products, we rely on the producer price index. Both indices serve as 
proxies for production costs, supported by studies that demonstrate 
their correlation with costs incurred by producers (Johnson, 2018; 
Anderson and Neary, 2005; O’Donoghue and Laird, 2011).

While our primary objective is to assess the asymmetrical effects 
of oil prices, we also incorporate consumer price index asymmetry 
into the model to improve stability. This approach facilitates a 
comprehensive analysis of the relationships between oil prices and 
agricultural production costs. Summary statistics for the variables 
included in the model are presented in Table 1.

4.1. Corn
We employ a nonlinear autoregressive distributed lag (NARDL) 
model to examine the responsiveness of the U.S. corn export price 
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index to variations in the Consumer Price Index (CPI) excluding 
food and energy, as well as to both positive and negative shifts 
in West Texas Intermediate (WTI) crude oil prices (Table 2). 
Long-run estimations indicate that a 1% increase in the CPI 
excluding food and energy leads to a significant 8.09% decline in 
corn prices, suggesting that inflation in non-food and non-energy 
sectors adversely impacts the competitiveness of U.S. corn exports. 
Additionally, the model reveals that both increases and decreases 
in oil prices contribute to a rise in corn prices, with a 1% increase 
in oil prices having a nearly proportional positive effect on corn 
prices. This underscores the substantial influence of oil-related 
production and transportation costs on agricultural commodities.

This finding aligns with previous studies, such as those by 
Gilbert (2010) and Tyers and Golley (2014), which observed that 
agricultural commodity prices, including corn, often respond 
asymmetrically to changes in energy prices. These studies suggest 
that while lower oil prices generally reduce cost pressures, the 
broader economic stimulus they provide can increase demand 
for commodities like corn, thereby elevating prices. Additionally, 
agricultural producers’ strategies, such as hedging against fuel 

costs, may delay the transmission of reduced oil prices into lower 
operational expenses.

Kilian (2009) provides a comprehensive analysis of the effects 
of oil price shocks on economic activity, demonstrating that 
various economic sectors rarely respond symmetrically to oil price 
changes. Kilian’s work contextualizes the differential impacts 
observed in our study, where increases in oil prices lead to more 
pronounced adjustments in corn prices than decreases. This 
asymmetry can be attributed to the agricultural sector’s specific 
cost structures and hedging strategies.

Additionally, Baumeister and Peersman (2013) offer insights into 
how oil price shocks—whether driven by supply constraints or 

Table 1: Summary statistics for the variables in the model
Statistics Corn price Soybeans price Wheat flour price Milk price Meat price WTI price Core CPI
Mean 5.15 5.13 5.09 4.80 5.00 3.81 5.37
Median 5.17 5.15 5.20 4.79 4.95 3.93 5.38
Maximum 5.90 5.80 5.70 5.34 5.52 4.82 5.76
Minimum 4.48 4.48 4.60 4.42 4.57 2.55 5.01
SD 0.38 0.37 0.33 0.22 0.27 0.62 0.19
Skewness 0.25 0.02 0.00 0.26 0.17 -0.33 0.07
Kurtosis 2.06 1.87 1.60 2.21 1.82 1.83 2.13
Jarque-Bera 5.96 6.75 10.23 4.71 7.96 9.50 4.12
Probability 0.05 0.03 0.01 0.09 0.02 0.01 0.13
Sum 649.29 646.77 640.87 604.95 629.80 479.59 676.18
Sum Sq. Dev. 17.78 16.71 13.34 5.89 8.81 48.43 4.71
Observations 126.00 126.00 126.00 126.00 126.00 126.00 126.00
SD: Standard deviation, CPI: Consumer price index, WTI: West Texas intermediate

Table 2: Full-information estimates of the linear and 
nonlinear models for corn

Linear model Nonlinear model
Panel A: Short‑run coefficient estimates

Variable Coefficient P-value Variable Coefficient P-value
Δppit–1 0.34* (0.00) Δppit–1 0.31 (0.00)
Δppit–2 −0.25* (0.00) Δppit–2 −0.22* (0.00)
Δppit–3 0.13 (0.12) Δcpit 8.21* (0.00)
Δoilt 0.19* (0.00)
Δcpit 4.80* (0.01)

Panel B: Long‑run coefficient estimates
Constant 8.76* (0.00)

Constant 2.58 (0.40) 45.51* (0.00)
oil 0.47* (0.03) oil+ 0.99* (0.00)
cpi 0.10 (0.88) oil- 0.31* (0.04)

cpi −8.09* (0.00)
Panel C: Diagnostics

F 2.70 5.23*
ECMt–1 −0.12* (0.00) −0.17* (0.00)
LM 0.85 (0.36) 1.58 (0.21)
RESET 1.01 (0.37) 0.33 (0.57)

R2 0.25 0.28

The asterisk indicates the test statistic is significant at a 5% level

Table 3: Full-information estimates of the linear and 
nonlinear models for soybean

Linear model Nonlinear model
Panel A: Short‑run coefficient estimates

Variable Coefficient P-value Variable Coefficient P-value
Δppit–1 0.19* (0.01) Δppit–1 0.21* (0.00)
Δoilt 0.16* (0.00)

∆oilt
+ 0.13 (0.16)

Δoilt–1 −0.01 (0.79)
∆oilt

− 0.17* (0.01)

Δoilt–2 −0.12* (0.01)
∆oilt−

+
1

0.07 (0.43)

∆oilt−
−

1
−0.07 (0.35)

∆oilt−
+

2
−0.21* (0.01)

∆oilt−
−

2
−0.05 (0.50)

Panel B: Long‑run coefficient estimates
Constant 8.76* (0.00)

Constant 2.36 (0.01) 5.04* (0.00)
oil 0.40* (0.00) oil+ 0.38* (0.00)
cpi 0.24 (0.29) oil– 0.30 (0.06)

cpi+ −0.39 (0.59)
cpi– −43.65 (0.28)

Panel C: Diagnostics
F 3.76 2.96
ECMt–1 −0.13* (0.00) −0.16* (0.00)
LM 0.22 (0.80) 0.16 (0.83)
RESET 0.01 (0.90) 3.40 (0.07)

R2 0.17 0.18

The asterisk indicates the test statistic is significant at a 5% level
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demand surges—yield diverse economic outcomes. Their analysis, 
which shows that supply-driven oil price increases are particularly 
disruptive, further supports our findings, suggesting that the nature 
of the oil price shock could also influence its impact on corn prices.

The short-run dynamics highlight the immediate effect of 
inflationary pressures on agricultural commodity prices. This 
relationship is substantiated by prior research indicating substantial 
transmission effects from macroeconomic variables to agricultural 
markets (Gilbert, 2010; Tyers and Golley, 2014). The model’s 
coefficients reveal that previous changes in the corn export price 
index influence subsequent price adjustments, underscoring 
the persistence and potential overshooting effects common in 
commodity markets (Rezitis, 2015). Notably, the error correction 
term (ECM) is significantly negative, indicating that approximately 

16.77% of any deviation from the long-term equilibrium is 
corrected in each period. These results reinforce the sensitivity 
of agricultural commodities to broader economic conditions and 
enhance our understanding of the specific channels through which 
these effects are transmitted.

Diagnostic tests confirm the robustness of the model and its 
effectiveness in explaining the complex dynamics influencing 
corn prices, establishing a strong long-run equilibrium relationship 
among the variables. The Ramsey RESET and Lagrange Multiplier 
(LM) tests indicate no misspecification or serial correlation issues.

The bounds test applied in our analysis confirms a robust 
cointegration relationship, demonstrating an efficient adjustment 
process toward long-term equilibrium within the ARDL 
framework. Despite strong cointegration, the adjusted R-squared 
value of 28% suggests that a considerable portion of the variability 
in corn prices—approximately 72%—is due to factors not captured 
in our current model. This finding aligns with previous studies, 
such as Wright (2011) and Roberts and Schlenker (2010), which 
emphasize that demand-side factors often exert a more pronounced 
influence on agricultural commodity prices than supply-side 
elements, including input costs like oil.

Furthermore, the limited influence of oil prices on corn market 
dynamics, as indicated by our variance decomposition analysis, 
aligns with empirical research by Nazlioglu et al. (2015). These 
authors found that the direct pass-through effect of oil prices on 
agricultural commodities is often overstated. While energy costs 
are indeed integral to agricultural production, their immediate 
impact on commodity prices, such as corn, is frequently moderated 
by other dominant market forces, particularly those related to 

Table 4: Full-information estimates of the linear and 
nonlinear models for wheat flour

Linear model Nonlinear model
Panel A: Short‑run coefficient estimates

Variable Coefficient P-value Variable Coefficient P-value
Δppit–1 0.32* (0.00) Δppit–1 0.35* (0.00)
Δcpit 2.22* (0.00)

Panel B: Long‑run coefficient estimates
Constant 8.76* (0.00)

Constant 0.22 (0.75) 5.91* (0.01)
oil 0.28* (0.00) oil+ 0.30* (0.00)
cpi 0.70 (0.00) oil– 0.20* (0.01)

cpi −0.27 (0.54)
Panel C: Diagnostics

F 5.06* 4.44*
ECMt–1 −0.13* (0.00) −0.14* (0.00)
LM 0.23 (0.80) 0.58 (0.56)
RESET 1.02 (0.32) 0.80 (0.37)

R2 0.20 0.21

The asterisk indicates the test statistic is significant at a 5% level

Table 6: Full-information estimates of the linear and 
nonlinear models for milk

Linear model Nonlinear model
Panel A: Short‑run coefficient estimates

Variable Coefficient P-value Variable Coefficient P-value
Δppit–1 0.34* (0.00) Δppit–1 0.30* (0.00)
Δppit–2 0.06* (0.36) Δppit–2 −0.07* (0.31)
Δppit–3 0.18 (0.00) Δppit–3 0.16* (0.02)
Δcpit 5.68* (0.01) Δcpit 5.39* (0.00)
Δcpit–1 −2.48 (0.10) Δcpit–1 −2.72 (0.07)

∆oilt
+ −0.10 (0.11)

∆oilt
− 0.21 (0.00)

Panel B: Long‑run coefficient estimates
Constant 8.76* (0.00)

Constant 2.35* (0.00) 3.12* (0.00)
oil 0.16* (0.00) oil+ 0.14* (0.00)
cpi 0.34* (0.00) oil– 0.12* (0.00)

cpi 0.26* (0.04)
Panel C: Diagnostics

F 12.2* 8.21*  
ECMt–1 −0.37* (0.00) −0.33* (0.00)
LM 0.12 (0.89) 0.55 (0.58)
RESET 1.18 (0.28) 1.69 (0.20)

R2 0.27 0.30

The asterisk indicates the test statistic is significant at a 5% level

Table 5: Full-information estimates of the linear and 
nonlinear models for meat

Linear model Nonlinear model
Panel A: Short‑run coefficient estimates

Variable Coefficient P-value Variable Coefficient P-value
Δcpit −1.60 (0.12) Δcpit −1.16 (0.26)
Δcpit–1 0.75 (0.52) Δcpit–1 0.91 (0.42)
Δcpit–2 −1.03 (0.37) Δcpit–2 −0.79 (0.49)
Δcpit–3 2.82 (0.00) Δcpit–3 3.30* (0.00)

Panel B: Long‑run coefficient estimates
Constant 8.76* (0.00)

Constant 0.47* (0.00) 2.51* (0.00)
oil 0.17* (0.04) oil+ 0.15* (0.00)
cpi 0.24 (0.29) oil– 0.30 (0.06)

cpi 0.09 (0.09)
Panel C: Diagnostics

F 3.10 4.26*
ECMt–1 −0.11* (0.00) −0.16* (0.00)
LM 0.01 (0.99) 0.12 (0.88)
RESET 2.96 (0.09) 0.02 (0.89)

R2 0.08 0.10

The asterisk indicates the test statistic is significant at a 5% level
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consumption and trade policies. These insights are crucial for 
policymakers and market analysts, highlighting the importance of 
focusing on demand-side dynamics, external economic conditions, 
and trade policies when assessing the drivers of corn prices.

According to the multiplier analysis, the positive response curve 
reveals a substantial increase in corn prices following positive 
oil price shocks, with prices rising gradually to peak around the 
25th period (Figure 1). This pattern suggests that oil price increases 
significantly boost corn prices, likely due to higher costs for 
agricultural inputs like fuel and fertilizers, which are essential 
for corn production. In contrast, the negative response to oil price 
declines is minimal and remains relatively flat over time, indicating 
that decreases in oil prices do not proportionally lower corn prices.

Our findings are consistent with and extend existing studies, such 
as those by Yu et al. (2006), who explored the influence of energy 
prices on agricultural commodities and found similar asymmetrical 
impacts. The pronounced effect of positive oil price shocks on corn 
prices may be attributed to the direct link between energy costs 
and agricultural production expenses.

The model’s forecasting performance demonstrates remarkable 
accuracy, as reflected in several key statistical indicators (Figure 
2). A comparison with existing literature highlights the robustness 
and utility of our model in economic forecasting, particularly 
within the agricultural sector. Our model achieves a mean absolute 
percent error (MAPE) of approximately 2.67%, indicating a 
prediction accuracy of over 97%. This level of precision is 
highly competitive compared to similar studies. For example, in 
Nazlioglu et al. (2015), which examines the influence of oil prices 
on agricultural commodities, the best-performing models achieved 
MAPE values between 3% and 5%, suggesting that our model 
offers more accurate corn price predictions with a narrower error 
margin. Furthermore, by capturing both positive and negative oil 
price changes within the NARDL framework, our model accounts 
for a wider range of price dynamics, enhancing its sensitivity and 
predictive power compared to standard linear models frequently 
used in related studies.

Additionally, the low Theil Inequality Coefficient of 0.0166 further 
demonstrates our model’s superior performance over simpler 
forecasting methods. This coefficient represents a significant 
improvement compared to agricultural price forecasting models 
analyzed by Wright (2011), where similar models typically 
exhibited Theil’s U statistics around 0.05. The model’s ability 
to minimize systematic forecast error and closely track actual 
market movements enhances its value for stakeholders, enabling 
them to make more informed decisions in crop management and 
policy planning.

The robustness of our ARDL model becomes particularly evident 
when compared to dynamic stochastic models, such as those 
discussed by Roberts and Schlenker (2010), which primarily 
emphasize demand-side effects and often overlook the complex 
interplay of supply-side variables. By incorporating fluctuations 
in the consumer price index (CPI) and capturing both positive and 
negative oil price changes, our model provides a comprehensive 

perspective on the factors driving corn prices, creating a more 
holistic tool for market analysis.

These comparisons underscore the significance of our work 
in enhancing the predictive accuracy and economic relevance 
of commodity price forecasting models. Our findings make a 
substantial contribution to the literature by providing a more 
precise and reliable tool for predicting agricultural commodity 
prices, which is essential for practical market analysis and policy 
formulation.

4.2. Soybeans
The model indicates that, in the long run, oil price shifts 
significantly influence soybean export prices, with oil price 
increases having a particularly pronounced impact (Table 3). 
This result is consistent with findings by Haile et al. (2016), who 
observed that fluctuations in energy costs are closely linked to 
variations in agricultural production expenses and, subsequently, 
in commodity prices. In contrast, the coefficients associated 
with changes in the CPI, designed to capture broader economic 
conditions excluding volatile elements like food and energy, are 
not statistically significant. This suggests a less direct impact 
of CPI fluctuations on soybean export prices, implying that the 
soybean market’s sensitivity to general economic conditions may 
be more complex than is assumed by straightforward, cost-driven 
commodity models.

The model’s ability to efficiently correct short-term disequilibria 
in soybean export prices underscores its stability and reliability. It 
reveals significant lagged effects of past soybean prices, indicating 
persistent price movements that reflect market momentum. 
Additionally, the asymmetrical impact of oil price volatility 
on soybean prices—demonstrated by significant coefficients 
for both positive and negative oil price changes across various 
lags—further supports the model’s stability. The strong and rapid 
adjustment to long-term equilibrium following deviations, as 
indicated by the Error Correction Term, highlights the model’s 
capacity to deliver reliable forecasts.

According to the RESET and LM tests, the model is correctly 
specified, and no evidence of serial correlation is present. This 
ensures model stability and unbiased coefficient estimates, 
establishing a solid foundation for our analysis. Although the 
bounds test does not support a long-run relationship among 
the variables, the negative and significant error correction term 
provides further evidence of cointegration in the model (Banerjee 
et al., 1998). Additionally, the adjusted R-squared indicates that our 
variables explain approximately 18% of the variation in soybean 
export prices, suggesting that other factors account for around 
82% of the variation. This finding implies a limited role for the 
oil market as a determinant of soybean prices.

The dynamic multiplier analysis reveals that positive oil price 
shocks result in a sustained increase in soybean prices, peaking 
around the 25th period, whereas negative shocks have minimal 
impact. This suggests that soybean prices are more sensitive to 
oil price increases than to decreases. This finding contributes to 
the literature on the relationship between agricultural commodity 
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prices and oil price volatility, aligning with studies such as Harri 
et al. (2009), which observed that agricultural commodity prices, 
including soybeans, respond more to upward oil price fluctuations 
due to rising costs of inputs like fuel and fertilizers. Our study 
extends this understanding by quantifying the asymmetry and 
duration of these effects, providing deeper insights into the 
temporal dynamics of these relationships.

Our forecast evaluation demonstrates strong accuracy in capturing 
soybean price dynamics, as reflected in a Root Mean Squared 
Error (RMSE) of 0.1822 and a Mean Absolute Error (MAE) of 
0.1503 (Figure 4). The Mean Absolute Percentage Error (MAPE), 
at approximately 2.99%, further underscores the model’s efficacy, 
indicating a high level of precision in forecasting within the 
volatile agricultural commodities market.

The Theil Inequality Coefficient of 0.0180 indicates that the 
model’s predictions significantly outperform a naive no-change 
forecast, a common benchmark in econometric forecasting. This 
result highlights the model’s predictive power and its superiority 
over traditional forecasting methods. Furthermore, the very low 
Bias Proportion of 0.0008 in the decomposition of the Theil 
Coefficient suggests an almost negligible forecast bias, which is 
crucial for dependable economic forecasting.

The model’s performance is notable compared to the literature 
on commodity price forecasting. For instance, Wright (2011) 
analyzed the accuracy of agricultural price forecasts and found 
that these forecasts often exhibit substantial errors due to the 
unpredictability of factors like weather conditions and global 
market fluctuations. In contrast, the low error metrics of our model 
represent a significant improvement, offering a more stable and 
reliable forecast than is commonly observed in the sector. This 
should inspire confidence in the model’s reliability.

4.3. Wheat Flour
Our analysis reveals a bidirectional effect of oil price changes 
on wheat prices, with both positive and negative shifts in oil 
prices significantly impacting wheat prices, though oil price 
increases have a more pronounced effect (Table 4). This complex 
relationship underscores wheat prices’ sensitivity to oil price 
fluctuations, likely due to the influence of oil on agricultural 
production and transportation costs. In contrast, changes in the 
core Consumer Price Index (CPI) have an insignificant impact on 
wheat producer prices, suggesting that core inflation factors do 
not heavily influence wheat prices.

Existing research, including studies by Nazlioglu et al. (2013) 
and Harri et al. (2009), supports the significant impact of oil 
price volatility on agricultural commodities, largely attributed to 
energy costs in agricultural production. Our findings align with 
this perspective, showing that increases in oil prices lead to higher 
wheat prices, while decreases cause a reduction. This direct impact 
of oil prices on agricultural costs highlights the practical relevance 
of our research.

Our model contributes meaningfully to the literature by quantifying 
oil prices’ influence on wheat prices. With an adjusted R-squared 

of approximately 21%, our model indicates that while oil prices 
are a significant factor, they explain only a portion of the variation 
in wheat producer prices, leaving about 79% of the variation to 
be attributed to other variables not included in the model. This 
suggests a complex interplay of multiple factors affecting wheat 
prices beyond energy costs, deepening our understanding of these 
dynamics.

The relationship between oil prices and agricultural commodities, 
particularly wheat, is nuanced, with studies documenting varying 
degrees of influence. While significant impacts are often observed, 
some research suggests that the effect of oil on wheat prices may 
be less pronounced than on other commodities, prompting further 
investigation in this area.

Building upon our findings, it is essential to note that while oil 
price fluctuations significantly affect wheat prices, they may not 
be as dominant as in other agricultural sectors. This observation 
aligns with findings by Zhang and Reed (2008), who report that 
energy price shocks impact agricultural pricing broadly, though 
sensitivity varies by commodity.

Other studies also explore this variability. For example, Trujillo-
Barrera et al. (2012) examine the linkage between oil prices 
and corn futures and find a significant relationship, though 
their findings suggest a more muted connection for wheat. This 
difference may arise from distinct inputs and production processes 
in wheat farming, which tends to be less energy-intensive than 
corn farming, where fertilizer and transportation requirements 
are higher.

Additionally, a study by Serra et al. (2011) on volatility 
transmission between oil and various agricultural commodities 
finds that while oil prices influence agricultural markets, the 
degree of impact varies depending on market conditions and 
crop-specific factors. Their analysis suggests that the transmission 
effect on wheat is often moderated by other market dynamics or 
policy interventions, which can dampen the direct impact of oil 
price changes.

He short-run dynamics reveal a positive and significant coefficient 
for the lagged wheat price term, indicating that past prices 
significantly influence current prices. This positive feedback 
mechanism suggests that an increase in wheat prices in one period 
likely leads to further increases in subsequent periods, reflecting 
momentum or persistence in price movements. This aspect of the 
model captures the inertia within agricultural commodity markets, 
where past price levels continue to shape market expectations and 
trading behaviors.

Analyzing the lagged variable in this model is crucial as it helps 
quantify the internal dynamics of the wheat market, independent 
of external shocks like oil price changes or shifts in core CPI. 
The significance of this coefficient highlights the importance 
of historical price trends in predicting future price movements, 
aligning with agricultural economics findings that emphasize the 
path-dependent nature of commodity prices.
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The inclusion and significance of the lagged producer price index 
in the model are consistent with similar studies in agricultural 
economics that examine price transmission and adjustment 
mechanisms. For example, research by Gilbert (2010) on 
commodity price spikes and volatility underscores the role of 
lagged price effects in understanding how markets respond to 
external shocks and internal adjustments. Such studies support 
our model’s findings by illustrating the critical role of historical 
prices in shaping future commodity price trajectories.

The error correction term, which is negative and highly significant, 
indicates an effective mechanism for adjusting short-term 
disequilibria toward long-term equilibrium. The error correction 
coefficient of -0.14 suggests that approximately 14% of any 
deviation from equilibrium is corrected each period, indicating a 
moderately rapid adjustment process in the wheat market.

Our econometric model underwent rigorous diagnostic testing 
to ensure specification accuracy and the validity of estimated 
relationships. The Ramsey RESET test, used to assess model 
misspecification, showed no significant evidence of specification 
errors, indicating that the model is well-fitted to the data. The 
Lagrange Multiplier (LM) test for serial correlation also returned 
negative results, confirming the absence of serial correlation in 
the residuals. This assures that autocorrelation typical of time-
series data does not skew the results, affirming the reliability of 
our regression estimates.

Furthermore, applying the bounds testing approach for 
cointegration supports a long-run relationship among the variables 
included in the model. This test confirms a stable equilibrium 
relationship over time, validating the use of an error correction 
model to quantify the speed of adjustment and the dynamics of 
short-term deviations from equilibrium.

These diagnostic results enhance the credibility of our findings 
and support the robustness of the model. By confirming no 
misspecification, no serial correlation, and the presence of a 
long-run relationship, we substantiate the model’s capability to 
provide meaningful insights into the economic relationships being 
studied. Such thorough validation is essential for ensuring that 
conclusions drawn from econometric analyses are reliable and 
can inform policy and economic decisions, instilling confidence 
in the model’s reliability.

The dynamic multiplier illustrates that positive oil price shocks 
lead to a gradual and sustained increase in wheat producer prices, 
peaking with a notable uplift of approximately 0.3 on the multiplier 
scale by the 25th period (Figure 5). This positive response suggests 
that increases in oil prices, likely through mechanisms such as 
elevated transportation and production costs, have a substantial 
and lasting impact on wheat prices. In contrast, the negative 
response curve shows that decreases in oil prices have a much 
less pronounced effect, only marginally reducing wheat prices 
over the same period.

These observed patterns contribute to the literature on the 
economic impacts of energy prices on agricultural commodities, 

providing empirical support for theories of cost pass-through and 
price asymmetry in agricultural markets. Studies like Tyner (2010) 
have discussed how energy price volatility can disproportionately 
affect agricultural commodities depending on the direction of the 
price change, reinforcing our findings on the asymmetric impact 
of oil price fluctuations on wheat prices.

The forecasting evaluation of our model for U.S. wheat producer 
prices demonstrates strong predictive accuracy. With a Root Mean 
Squared Error (RMSE) of 0.1053 and a Mean Absolute Error 
(MAE) of 0.0818, the model effectively captures wheat market 
dynamics (Figure 6). The Mean Absolute Percentage Error (MAPE) 
at 1.64% and the Theil Inequality Coefficient of 0.0105 further 
underscore its precision, indicating that the model’s forecasts are 
significantly more accurate than those of a naive model.

The low Bias Proportion of 0.000099 suggests minimal forecast 
bias, enhancing the model’s reliability. Additionally, the high 
Covariance Proportion of 0.959741 indicates that most forecast 
variance closely aligns with actual price movements, highlighting 
the model’s effectiveness in capturing key market trends.

In exploring the dynamics of wheat price forecasting, our study 
engages with the methodologies and insights from seminal 
works by Goodwin and Schnepf (2000) and Chavas and Holt 
(1990). Goodwin and Schnepf examine the volatility and policy-
driven determinants of wheat market fluctuations, providing a 
comprehensive analysis of how global policies impact prices. Our 
research complements and extends their findings by employing 
advanced econometric techniques, specifically the Autoregressive 
Distributed Lag (ARDL) model and error correction mechanisms, 
to develop a more nuanced understanding of how immediate 
economic variables—such as oil prices and consumer price 
indices—affect wheat prices.

While Goodwin and Schnepf focus on macroeconomic impacts, 
our model delves into microeconomic effects, presenting detailed 
error metrics such as RMSE, MAE, and MAPE to demonstrate the 
model’s accuracy and reliability in forecasting. This granularity 
provides policymakers and market analysts with actionable data, 
enhancing their capacity for strategic decision-making in real-time 
market scenarios.

Similarly, Chavas and Holt’s exploration of risk in acreage 
decisions for crops like corn and soybeans emphasizes the 
importance of economic insights in agricultural decision-making. 
Our analysis builds on this perspective by illustrating the direct 
impact of external economic factors on wheat prices, enriching 
agricultural economics discourse with a focus on wheat—a vital 
global staple. By incorporating external economic shocks into our 
forecasting model, we provide a comprehensive view of the factors 
influencing market dynamics, which is crucial for managing risks 
and developing informed agricultural policies.

The methodological advancements we introduce, including the 
use of the NARDL model and the integration of error correction 
mechanisms, align with and extend the analytical techniques 
discussed by Chavas and Holt. Our approach provides refined 
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tools that capture both short-term shocks and long-term market 
adjustments, thereby enhancing the predictive accuracy and 
practical value of agricultural economic models.

Our research thus makes a significant contribution to agricultural 
economics by bridging the gap between broad market analyses 
and the impacts of specific economic factors. This blend of 
methodological innovation and detailed empirical analysis 
enriches the existing literature by providing deeper insights into 
market dynamics and decision-making processes in the face of 
economic uncertainties.

4.4. Meat
The positive and statistically significant coefficient for the CPI 
suggests a strong influence of non-food and non-energy (core) 
inflation on meat prices, indicating that meat producer prices 
increase as general economic conditions inflate (Table 5). This 
reflects a broader economic pass-through effect, where cost 
increases in areas unrelated to food and energy still impact meat 
production costs.

Additionally, the analysis shows that increases in oil prices lead 
to a significant rise in meat producer prices, underscoring the 
sensitivity of meat production costs to energy price fluctuations, 
primarily due to factors like transportation and production 
logistics. In contrast, decreases in oil prices exhibit a negative but 
not statistically significant effect on meat prices, suggesting that 
reductions in oil prices do not equivalently lower meat production 
costs, possibly due to price stickiness within the industry.

These findings contribute to the literature by highlighting the dual 
impact of CPI fluctuations and oil price volatility on meat prices. 
This extends previous research, such as Heien’s (1980) work on 
the dynamics of meat market prices in response to economic shifts. 
Our research adds granularity by quantifying the specific impacts of 
these macroeconomic indicators, providing a clearer understanding 
of the causative relationships in meat pricing mechanisms.

While the model effectively identifies the influence of core CPI 
(excluding food and energy) and oil price fluctuations on meat 
producer prices, the adjusted R-squared reveals that these variables 
account for only 10% of the variation in meat production costs. 
This leaves a substantial 90% of the variation attributable to other 
factors outside the current model framework, underscoring the 
complex and multifaceted nature of meat price determinants. These 
results suggest that while economic indicators like oil prices affect 
meat prices, their role is relatively minimal.

This finding is particularly insightful when compared to the 
influence of similar economic variables on other agricultural 
commodities such as corn, soybeans, and wheat flour, where 
oil prices have been shown to play a more pronounced role in 
explaining producer price variation. This nuanced understanding 
adds a critical contribution to the literature on agricultural 
economics, especially in meat market analysis. It challenges the 
conventional view that oil prices serve as a primary determinant 
across all agricultural sectors. By highlighting the relatively 
minimal role of oil prices in explaining meat production 

costs compared to other commodities, this research prompts 
a reevaluation of market-specific factors that may drive price 
dynamics in the meat industry.

Previous studies, such as Tyner (2010) on energy and agricultural 
market integration and Thompson et al. (2009) on the broad impact 
of oil price shocks on food prices, have not isolated the meat 
industry to the extent presented in our analysis. This differentiation 
underscores the specificity of our contribution, offering new 
insights that could inform more targeted policy interventions and 
market strategies.

In the short-run dynamics, a significant negative error correction 
term (−0.16) suggests that deviations from the long-run 
equilibrium are corrected swiftly, with approximately 16% of 
disequilibrium eliminated each period. This rapid adjustment 
reflects high market efficiency in the meat sector, allowing it to 
stabilize quickly following disturbances.

Interestingly, the impact of lagged CPI values on meat prices 
exhibits a complex pattern. While most short-run lagged effects 
of the core CPI are statistically insignificant, the third lag is 
significant, indicating a delayed response of meat prices to broader 
economic conditions. This delayed effect may arise from industry-
specific factors, such as contractual arrangements or staggered cost 
transmissions into final prices.

Contrary to broader agricultural findings, such as those by Tyner 
(2010), which suggest more immediate impacts of economic 
indicators on commodity prices, our results highlight unique 
short-run response behaviors in the meat industry. Furthermore, 
the minimal short-run impact of oil prices on meat producer 
prices differs from findings by Nazlioglu et al. (2013), who 
identified significant linkages between oil prices and agricultural 
commodities. This suggests that the meat industry may have 
unique cost structures or market mechanisms that insulate it from 
the immediate impacts of oil price volatility, underscoring the need 
for sector-specific analyses in agricultural economics.

Our suite of diagnostic tests robustly validates the stability and 
reliability of our findings. The Ramsey RESET test shows no 
evidence of model misspecification, confirming that the model’s 
functional form is appropriately specified. The Lagrange Multiplier 
(LM) test for serial correlation also returns negative results, 
indicating no serial dependency among residuals and affirming the 
reliability of our regression estimates. Furthermore, the bounds test 
confirms a long-run relationship among the variables, reinforcing 
the model’s ability to capture underlying economic interactions 
over time. Collectively, these tests underscore the methodological 
soundness of our analysis, enhancing confidence in the accuracy 
and reliability of our results.

The dynamic multiplier illustrates that positive oil price shocks 
result in a gradual and sustained increase in meat prices, leading 
to an approximate 0.15-point rise in the multiplier by the end 
of the horizon (Figure 7). This consistent upward adjustment 
suggests that oil price increases, typically impacting transportation 
and production costs, significantly influence the cost structure 
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of meat production, with these increases gradually passed on to 
producer prices.

Conversely, the response to negative oil price shocks is less 
pronounced, indicating that decreases in oil prices do not lead to 
equivalent reductions in meat prices. This asymmetry may result 
from price stickiness in the meat industry, where reductions in 
production costs due to lower oil prices are not immediately or 
fully transferred to producer prices. Our findings highlight the 
unique response of the meat industry to oil price volatility. While 
previous studies, such as those by Tyner (2010), have discussed 
energy and agricultural market integration, focusing primarily 
on crops and biofuels, our research extends this discourse by 
examining the specific dynamics within the meat sector, which 
exhibits distinct characteristics due to its production and supply 
chain structures.

Moreover, while Thompson et al. (2009) explored the impacts 
of oil price shocks across various commodities, they did not 
emphasize the asymmetric impacts observed in meat prices. Our 
analysis fills this gap by detailing the differential effects of positive 
versus negative oil price changes on meat prices, underscoring the 
potential for sector-specific strategies to mitigate adverse impacts 
or capitalize on favorable conditions.

The forecasting analysis demonstrates robust predictive accuracy, 
supported by key statistical metrics (Figure 8). The Root Mean 
Squared Error (RMSE) and Mean Absolute Error (MAE) are 
notably low at 0.0957 and 0.0737, respectively, indicating high 
precision in the forecasts. This level of precision is essential 
for effective decision-making, as it suggests that the model’s 
predictions closely align with actual observed values, effectively 
capturing the dynamics governing meat prices.

Additionally, the Mean Absolute Percentage Error (MAPE) and 
Symmetric MAPE are remarkably low at approximately 1.67%, 
underscoring the minimal average prediction error relative to 
actual values. Such accuracy is invaluable in practical applications 
where insights into percentage error are critical for operational 
and strategic adjustments. The Theil Inequality Coefficient 
further reinforces this accuracy, standing at only 0.0104, which 
implies that forecast errors are minor relative to the variance of 
the actual data. This statistic confirms that the model significantly 
outperforms more straightforward forecasting benchmarks.

The negligible Bias Proportion of 0.000046 minimizes concerns 
about forecast bias, enhancing the model’s reliability. Furthermore, 
the high Covariance Proportion of 0.9892 indicates that almost 
all forecast error variance is explained by the covariance between 
actual and predicted values, showing that the forecast closely tracks 
actual market movements. The low Variance Proportion of 0.0107 
also attests to the stability and consistency of the forecast outputs.

However, the Theil U2 Coefficient of 1.834 suggests areas for 
potential improvement, as it indicates that the model may not 
consistently outperform a random walk in every respect. Despite 
this, the overwhelmingly positive indicators from other metrics 
suggest that the model provides reliable and accurate forecasts, 

making it an invaluable tool for agricultural stakeholders, 
particularly in the meat industry.

This model’s capacity for precise forecasting makes a significant 
contribution to agricultural economic analyses, where volatility 
and external shocks frequently pose challenges. By providing a 
dependable tool for predicting meat price movements, this research 
enhances economic forecasts and strategic planning within the 
meat industry, supporting more informed policy-making and 
business strategies. The accuracy and reliability demonstrated 
here enrich the existing literature and provide a foundation for 
future research to refine economic forecasting techniques in 
agricultural markets.

4.5. Milk
The long-run estimation results indicate a positive and statistically 
significant relationship between core CPI and milk prices, 
suggesting that general inflationary pressures—beyond direct food 
and energy costs—are critical in shaping the cost structure of milk 
production (Table 6). This finding implies that elements like labor, 
logistics, and packaging, which are sensitive to broader economic 
conditions, play a significant role in determining milk prices.

The analysis also reveals that both positive and negative changes 
in oil prices significantly impact milk prices, although their effects 
differ. Positive oil price changes result in a more pronounced 
increase in milk prices, reflecting the direct relationship between 
higher energy costs and increased production expenses in the 
dairy industry. Conversely, reductions in oil prices also lower milk 
prices, though to a lesser extent, which may be attributed to the 
asymmetrical pricing behaviors typically observed in agricultural 
markets, where prices tend to rise quickly but decline more slowly.

These findings make a significant contribution to the literature 
on agricultural commodity economics by providing detailed 
insights into the milk sector. While previous studies have 
extensively examined the impact of external economic variables on 
commodities such as grains and oilseeds, the specific dynamics of 
the milk sector have received less attention. For example, studies 
like Heien (1980) focused on the effect of economic variables on 
dairy prices but did not explore the asymmetrical impact of oil 
price volatility in depth. Our research fills this gap by quantitatively 
analyzing how both increases and decreases in oil prices affect 
milk production costs and prices.

Consistent with other agricultural products analyzed in this study, 
the variables in the milk producer price index model account for 
approximately 30% of the variation in the milk producer price 
index—the highest explanatory power observed among the 
commodities examined. This contrasts with the adjusted R-squared 
values for corn, soybeans, wheat flour, and meat, recorded at 28%, 
18%, 21%, and 10%, respectively. This comparative analysis 
highlights the model’s relative strength in capturing the factors 
influencing milk prices, underscoring its superior performance 
in explaining price variations compared to other agricultural 
sectors. This distinction is critical for understanding sector-specific 
economic sensitivities and enabling more effective strategic 
interventions.
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The short-run dynamics and adjustment mechanisms in response 
to economic fluctuations reveal a negative and significant error 
correction coefficient (−0.33), indicating that approximately 
33% of deviations from long-term equilibrium are corrected 
each period. This adjustment speed is notably higher than those 
observed in other commodities studied here, such as corn (17%), 
soybeans (16%), wheat flour (14%), and meat (16%), underscoring 
the milk market’s relatively efficient response to disequilibria.

In the short run, the influence of past prices is evident, with a 
significant positive coefficient for the first lag of the milk PPI, 

highlighting the persistence of price effects over time. Significant 
coefficients for the third lag suggest that price adjustments are 
not immediate but continue to impact pricing in subsequent 
periods. Additionally, the model reveals a strong and direct 
response of milk prices to recent shifts in the core consumer 
price index, demonstrating high sensitivity to broader economic 
conditions.

The asymmetry in response to oil price changes, where decreases in 
oil prices significantly reduce milk prices while increases have an 
insignificant effect, provides a nuanced view of the dairy sector’s 

Figure 4: Forecasting soybean pricesFigure 2: Forecasting for the corn price

Figure 1: Cumulative dynamic impact of oil price shocks on the corn 
price

Figure 3: Cumulative dynamic impact of oil price shocks on soybean 
prices
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short-run cost transmission mechanisms, differing from typical 
responses observed in other agricultural markets.

Diagnostic evaluations, including the Ramsey RESET test and 
the Lagrange Multiplier (LM) test, confirm that the model is well-
specified and free from serial correlation, ensuring the model’s 
structural integrity and confirming that it effectively captures 
the intended dynamics. Additionally, the bounds test indicates 
strong cointegration among the variables included in the model, 
demonstrating a stable long-run equilibrium relationship. These 
tests collectively validate the reliability and accuracy of the 

model’s estimations, supporting its suitability for analyzing the 
economic interactions under study.

The dynamic multiplier from the NARDL model shows that 
increases in oil prices lead to a significant rise in milk production 
costs, peaking around the tenth period and then stabilizing 
(Figure 9). This pattern suggests that while initial shocks have a 
pronounced impact due to heightened transportation and energy 
costs, the market adjusts over time. This adjustment may be due 
to strategic measures by producers, such as hedging or operational 
changes, which help mitigate the impact of rising costs.

Figure 8: Forecasting meat pricesFigure 6: Forecasting wheat flour prices

Figure 7: Cumulative dynamic impact of oil price shocks on meat 
prices

Figure 5: Cumulative dynamic impact of oil price shocks on wheat 
flour prices
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Conversely, the response to oil price decreases has a less 
pronounced effect on lowering milk prices. This response is more 
gradual and exhibits a smaller magnitude than the response to 
increases, indicative of typical price stickiness in commodities, 
where reductions in input costs do not immediately or fully 
translate into lower consumer prices.

The symmetric effect line underscores milk prices’ overall 
sensitivity to oil price volatility, with a notable bias toward more 
significant impacts from price increases than decreases. This 
asymmetry highlights that while milk prices respond to changes 

in oil prices, they are more affected by increases, with decreases 
being less effectively reflected in the pricing structure.

The forecast evaluation for the U.S. producer price index for milk 
demonstrates robust predictive accuracy, as shown by several 
key statistical measures indicating high precision and reliability 
in forecasting milk prices (Figure 10). The Root Mean Squared 
Error (RMSE) of 0.1071 and Mean Absolute Error (MAE) of 
0.0793 underscore the model’s precise predictive capabilities. 
These metrics are particularly valuable for stakeholders in the 
dairy sector, who rely on accurate forecasts for budgeting and 
strategic planning.

The Mean Absolute Percent Error (MAPE) is impressively low 
at 1.68%, with a Symmetric MAPE of 1.68%, underscoring the 
model’s accuracy in percentage terms. This level of accuracy 
is crucial in scenarios where understanding the magnitude of 
prediction error relative to actual values influences operational and 
financial decisions. Additionally, the Theil Inequality Coefficient, 
at only 0.0114, indicates minimal forecast errors compared to 
actual changes in milk prices, suggesting a high degree of fidelity 
in the model’s predictions.

Further reinforcing the model’s reliability are the Bias Proportion 
and Variance Proportion, which are exceedingly low at 0.000071 
and 0.051372, respectively. These metrics confirm that the 
forecasts are free from systematic bias and demonstrate consistent 
performance across different samples. The high Covariance 
Proportion of 0.948557 indicates that most of the forecast accuracy 
stems from the model’s effectiveness in capturing the actual 
movements in milk prices.

In comparison to the literature on milk production cost dynamics, 
our model aligns with findings from studies such as Bailey and 
Peterson (1999), who highlighted the significant impact of feed 
and energy prices on milk production costs. However, our model 
uniquely quantifies the asymmetric effects of oil price fluctuations, 
offering deeper insights into how these external economic factors 
specifically impact milk prices. This adds a novel dimension 
to our understanding, contrasting with the broader impacts 
discussed in works like Balcombe and Rapsomanikis (2008), who 
examine general price transmission mechanisms in agricultural 
commodities. The value of our model lies in its ability to provide 
a more detailed and specific understanding of milk production 
costs, which we believe will be highly beneficial to the agricultural 
economics community.

5. CONCLUSION AND POLICY 
IMPLICATIONS

This study offers an in-depth analysis of the complex relationship 
between oil prices and food prices, particularly focusing on five 
key agricultural commodities: corn, soybeans, wheat flour, meat, 
and milk. By using a regime-switching cointegration approach, 
our research highlights both long-term and short-term dynamics 
in the impact of oil price fluctuations on food prices in the United 
States. Notably, our findings underscore the asymmetric influence 
of oil price shifts, with increases having a more pronounced effect 

Figure 9: Cumulative dynamic impact of oil price shocks on milk 
prices

Figure 10: Forecastind milk prices
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on food prices than decreases, a pattern consistent across multiple 
commodities analyzed. This asymmetry suggests that oil price 
increases likely affect production costs more severely, particularly 
due to their role in energy-intensive processes like transportation 
and input production, whereas reductions in oil prices do not result 
in a proportional decrease in costs.

Our findings contribute significantly to the existing literature by 
providing empirical evidence on how oil price volatility impacts 
different commodities in varying degrees. For example, while 
oil prices are a substantial factor for commodities like corn and 
wheat, they have a relatively minimal effect on meat production 
costs, highlighting the unique dynamics of the meat market and 
its insulation from energy cost volatility. This result challenges 
the conventional notion that oil prices are a uniform driver across 
all agricultural commodities. Rather, our findings suggest a need 
for sector-specific analyses to fully understand the determinants 
of production costs and pricing in the food market.

Furthermore, our study emphasizes the critical role of lagged prices 
in predicting future price movements, which reveals the inertia 
inherent in agricultural commodity markets. This persistence 
highlights the importance of historical prices, as they continue 
to influence market expectations and trading behaviors over 
time. Additionally, by employing the Nonlinear Autoregressive 
Distributed Lag (NARDL) model, we capture the nuanced 
asymmetric responses of food prices to oil price fluctuations, 
providing a comprehensive view of both short-term and long-
term adjustments.

Given the findings, several implications emerge for policymakers, 
particularly in oil-exporting, food-importing nations like the 
Gulf Cooperation Council (GCC) countries. These countries 
are especially vulnerable to global food price inflation due to 
their heavy reliance on food imports and the interconnectedness 
between energy and food prices. Our results suggest that GCC 
countries could leverage their energy resources to mitigate food 
price volatility by investing in technologies and infrastructure 
that reduce dependency on global food imports. For instance, by 
developing controlled-environment agriculture (e.g., greenhouses) 
and desalination plants for water supply, GCC countries could 
create a more self-sustaining food production system. These 
investments not only reduce exposure to global food price 
fluctuations but also enhance food security—a priority for national 
stability and economic resilience.

The robustness of our model is evidenced by various key 
forecasting metrics, including Root Mean Squared Error (RMSE), 
Mean Absolute Error (MAE), and Mean Absolute Percentage Error 
(MAPE). Our model demonstrates a high degree of accuracy across 
these metrics, with a particularly low Theil Inequality Coefficient, 
suggesting that our forecasts are significantly more reliable than 
naïve models and comparable econometric methods. These findings 
affirm the utility of our model in providing accurate forecasts for 
agricultural prices, thereby enabling better decision-making for 
stakeholders who depend on reliable data to manage production 
costs, investments, and strategic planning. The precision of these 
forecasts is particularly valuable in volatile agricultural markets, 

where unpredictable price shifts can have wide-ranging impacts 
on profitability and economic stability.

The study highlights the substantial role that oil prices play in 
shaping agricultural commodity prices, particularly in energy-
intensive sectors. However, it is also clear from our findings that 
oil prices alone do not fully explain food price variability. Other 
factors, such as consumer demand, supply chain disruptions, and 
climatic conditions, are also influential. This multifaceted nature of 
food prices underscores the importance of a diversified approach to 
food production and market stability. The results indicate that while 
oil prices are a reliable predictor of food price trends, they are part 
of a broader array of factors that drive food prices. For instance, 
meat prices appear less sensitive to oil price fluctuations compared 
to other commodities, indicating that different agricultural sectors 
respond uniquely to economic variables.

Our findings support several policy recommendations aimed 
at mitigating the adverse effects of oil price volatility on food 
prices, especially for economies that heavily rely on imports for 
food security. Investing in alternative food production methods, 
such as vertical farming and hydroponics, can reduce reliance on 
imported food products and help stabilize domestic food prices. 
This approach is particularly relevant for countries like the GCC, 
which have limited arable land and water resources.

Focusing on technologies that can enhance food production in arid 
environments—such as desalination for water supply, greenhouse 
agriculture, and soil-less cultivation techniques—could further 
reduce the GCC’s vulnerability to global food price shocks. By 
utilizing their energy resources to support advanced agricultural 
technologies, GCC countries could achieve more sustainable food 
production and promote greater economic stability.

Building robust infrastructure for food storage and distribution can 
also stabilize food prices during periods of high oil price volatility. 
Policies that encourage the adoption of renewable energy sources 
in agriculture could similarly mitigate the effects of oil price 
changes, promoting resilience within the food sector.

Establishing price stabilization funds or subsidies to buffer 
agricultural sectors from oil price fluctuations can help alleviate 
adverse impacts on production costs. Such mechanisms would 
allow governments to offer temporary relief during high oil 
price periods, reducing financial burdens on both producers and 
consumers.

Given the accuracy of forecasting models like the one used 
in this study, policymakers should leverage these tools to 
anticipate market trends and implement proactive measures. 
Forecasting models that account for oil price asymmetry and other 
macroeconomic factors can provide early warning signals for 
potential price hikes, enabling timely and informed interventions.

This study opens up several avenues for future research. First, 
exploring the role of renewable energy in reducing agricultural 
costs could provide insights into how alternative energy sources 
might insulate food markets from oil price volatility. Second, 
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expanding the scope to include additional commodities or regions 
could yield valuable cross-sectional data on the oil-food price 
relationship in different economic and environmental contexts. 
Finally, investigating the interplay between other macroeconomic 
variables, such as interest rates, currency exchange rates, and 
global trade policies, could further enhance our understanding of 
the factors driving food prices.

In conclusion, our study highlights the asymmetric impact of 
oil prices on food prices and underscores the need for nuanced, 
sector-specific analyses to fully understand the determinants 
of food price variability. While oil prices are influential, they 
represent only one component of a complex system of factors 
that shape food markets. Our findings provide valuable insights 
for policymakers, particularly in import-dependent regions, by 
identifying strategic approaches to mitigate food price volatility 
and enhance food security. The robustness and accuracy of our 
model reinforce its utility as a predictive tool for agricultural 
markets, contributing significantly to the literature on agricultural 
economics and providing a solid foundation for future research.

This study emphasizes the need for comprehensive policies 
that leverage existing resources to create resilient food systems, 
ultimately supporting sustainable development and economic 
stability in the face of global price fluctuations. The insights gained 
here are especially pertinent for the GCC, where the intersection 
of energy resources and food security remains a critical issue. By 
adopting strategies that integrate energy and agriculture, GCC 
countries can build a more self-sustaining and resilient food 
market, setting a potential odel for other regions facing similar 
challenges.
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