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ABSTRACT

This study applies four forecasting approaches—Ensemble Learning (EL), Deep Learning (DL), Machine Learning (ML), and Chaotic modeling—
to predict energy production from the Konya Eregli solar power plant in Turkey. Using Python, it incorporates ambient temperature and solar cell 
temperature as exogenous variables alongside endogenous energy data. A year’s worth of 10-min interval data is trained, with two subsequent months 
forecasted by each model. The False Nearest Neighbors algorithm optimizes the embedding dimension for the chaotic analysis, and an optimized 
Echo State Network, achieving an R-squared above 0.97, is used for accurate forecasting. Additional models include Long-Short-Term Memory and 
Gated Recurrent Unit (DL), eXtreme Gradient Boosting and Random Forest (EL), and Extreme Learning Machine and Feed Forward Neural Network 
(ML). Each model is optimized using the Tree-structured Parzen Estimator, a Bayesian optimization approach. Evaluation metrics reveal all models 
performed well with the integration of endogenous and exogenous variables, with LSTM achieving the best results. This research advances solar energy 
forecasting, supporting Sustainable Development Goals (SDGs) related to affordable and clean energy, climate action, and sustainable communities 
through improved renewable energy management.

Keywords: Time Series Forecasting, Renewable Energy, Chaotic Analysis, Machine Learning, Deep Learning, Sustainable Development 
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1. INTRODUCTION

As solar energy generation becomes more prevalent, precise 
forecasting of solar power output becomes essential for 
optimal utilization of resources and efficient grid management 
(Hernández-Torres et al., 2015). A large portion of the studies aim 
to forecast the energy using meteorological factors such as solar 
radiation instead of endogenous inputs like output electricity 
(Kostylev and Pavlovski, 2011; Bizzarri et al., 2012; Jiménez-
Pérez and Mora-López, 2014; Lauret et al., 2015), because of 
its dependence on nonlinear parameters and more difficulty to 
be modeled and predicted than natural parameters. Advancing a 
sustainable future strategy offers significant potential to facilitate 
the transfer of advanced production technologies between 

countries, create effective opportunities for managing natural 
resources, and foster collaboration in addressing environmental 
challenges (Erdoğan et al., 2021). Solar energy is a rapidly 
growing and sustainable source of power that plays a crucial role 
in the transition to renewable and clean energy. The transition 
to low-carbon energy systems, which is essential for addressing 
climate change and energy security issues, is significantly 
propelled by the widespread adoption of renewable energy 
technologies (Tiba and Belaid, 2021). Forecasting the spread 
of renewable energy technologies is crucial for developing 
an effective energy agenda and establishing realistic targets 
for electricity generation. Time series forecasting techniques, 
coupled with statistical, ML, DL, and artificial intelligence (AI) 
approaches, have proven to be powerful tools for accurately and 
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reliably predicting solar power generation patterns (Vrettos and 
Gehbauer, 2019).

AI approaches combine statistical, machine learning, and deep 
learning techniques to enhance the accuracy and robustness 
of solar power time series forecasting. AI-based forecasting 
systems leverage the strengths of various models, combining 
their predictive capabilities to achieve more accurate and reliable 
results. By integrating real-time data, historical records, and 
meteorological forecasts, AI systems enable dynamic and adaptive 
forecasting, ensuring optimal management of solar energy 
resources. Eventually, solar power time series forecasting is a 
critical aspect of effective grid management and resource planning 
in the renewable energy sector. By employing statistical, ML, DL, 
and AI approaches, accurate predictions of solar power output can 
be achieved, enabling stakeholders to optimize energy utilization, 
make informed decisions, and pave the way for a cleaner and 
more sustainable future. Utilization of DL and EL techniques 
in the field of solar energy forecasting is appearing in the recent 
studies comparing to Support Vector Machine (SVM) and Artificial 
Neural Networks (ANN), which are the two most implemented 
approaches during the past decades (de Freitas Viscondi and Alves-
Souza, 2019). Moreover, there are limited number of studies using 
Chaotic analysis for solar energy forecasting, specifically using the 
Chaos based neural network model: Echo State Network (ESN).

The focus on solar power forecasting aligns closely with Goal 7: 
Affordable and Clean Energy, and Goal 13: Climate Action, of the 
United Nations Sustainable Development Goals (SDGs) (Su et al., 
2024; Baiardi, 2023). There are factors indicated by the empirical 
studies, such as economic growth and energy consumption, that 
impact climate change on national and global levels (Erdoğan 
et al., 2022). By advancing the accuracy of solar energy forecasts, 
this research supports the broader agenda of increasing the share 
of renewable energy in the global energy mix, thereby promoting 
sustainable and resilient energy infrastructure while combating 
climate change—a crucial goal given that air pollution is a key 
factor influencing sustainable growth (Ozturk et al., 2022).

This study addresses the complex, nonlinear nature of solar power 
generation, which is often overlooked in traditional forecasting 
methods that predominantly rely on meteorological or market 
data. By leveraging the False Nearest Neighbors (FNN) method, 
this study optimizes the embedding dimension of the time series 
data. This optimization is critical for accurately capturing the 
dynamics of solar energy production, a step often neglected in 
other studies. The significant reduction in FNN ratio highlights the 
improved representation of system dynamics, demonstrating the 
effectiveness of this method. Our results show that the exogenous 
variables enhance the accuracy of the ESN model by providing 
additional relevant information, thus reducing the FNN ratio and 
improving the overall predictive performance.

Utilizing data from the Konya Eregli Solar Power Plant, our study 
provides empirical validation of the proposed methodology in 
a real-world setting. This practical application underscores the 
model’s robustness and relevance, offering valuable insights into 
solar energy forecasting.

This research supports the achievement of several SDGs by 
enhancing the efficiency and reliability of solar energy forecasting. 
Improved predictions can lead to better management of renewable 
energy resources, contributing to affordable and clean energy 
(SDG 7), climate action (SDG 13), and sustainable community 
development (SDG 11).

2. LITERATURE REVIEW

The literature contains numerous examples of ML algorithms 
applied for forecasting purposes across various fields (Keskin 
et al., 2024). Accurately predicting photovoltaic power is crucial 
for managing the electricity network and ensuring balance between 
energy generation and consumption. Clearly, accurate predictions 
allow for efficient use of energy resources and optimal operation 
of production units (David et al., 2016). In the direct forecasting 
model, historical data, including PV electricity output and related 
meteorological data, are used to predict photovoltaic power 
production. Within this context, the work of (Das et al., 2018) 
offers a thorough and structured review, extensively covering how 
the Interrelation between input and output data affects results and 
highlights the advantages of optimizing these forecasting models.

Considering the type of input data used in the solar energy 
production forecasting field, and also the most implemented 
forecasting methods, authors in (de Freitas Viscondi and Alves-
Souza, 2019) provide a comprehensive Systematic Literature 
Review (SLR). The results of this SLR indicate that among the 
various algorithms, the ANN and SVM methods are the two 
most commonly used approaches; also, out of the 38 analyzed 
papers, only 7 used electricity-related input data, and 10 reported 
data quality assessments in their studies. To further evaluate the 
mentioned study gap, a number of different papers within this 
scope are investigated with regards to their considered input data 
for forecasting models, and availability of data pre-process in their 
studies. Table 1. presents the summarized results.

According to the results in Table 1, More than half of the papers 
analyzed in this section of the study have based their research on 
meteorological data or other external input data, like electricity 
market-related data, which is not directly related to electricity itself. 
As a result, these studies mainly emphasize the meteorological 
factors involved in energy conversion instead of the electrical 
infrastructure. Also, more than half of the investigated papers 
have not report data quality assessments, which its significance 
is evident.

3. MATERIALS AND METHODS

3.1. Machine Learning Models
3.1.1. Feed forward neural network
Feedforward neural networks (FFNN) (Bebis and Georgiopoulos, 
1994) are a simple form of artificial neural network in which 
data moves only from the input layer to the output layer, passing 
through one or more hidden layers, in a single direction and with 
no loops or feedback. Each layer is made up of connected neurons 
(nodes), that process and transmit data. In this network, inputs 
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Table 1: Summary of investigated studies considering 
their input data and data quality assessments
Article Electricity 

generation 
Data

Reporting 
data quality 
assessments

(Kostylev and Pavlovski, 2011) No No
(Bizzarri et al., 2012) No No
(Jiménez-Pérez and Mora-López, 2014) No No
(Lauret et al., 2015) No Yes
(David et al., 2016) No No
(Huang et al., 2010) Yes No
(Ding et al., 2011) Yes No
(Pedro and Coimbra, 2012) Yes Yes
(Kühnert et al., 2013) No No
(Yona et al., 2013) No No
(Hanna et al., 2014) Yes No
(Dambreville et al., 2014) No Yes
(Aggarwal and Saini, 2014) No Yes
(Gandelli et al., 2014) Yes Yes
(Russo et al., 2014) Yes No
(Dolara et al., 2015) Yes No
(Li et al., 2016) No No
(Gala et al., 2016) No No
(Li et al., 2016) Yes No
(Lou et al., 2016) No Yes
(Aybar-Ruiz et al., 2016) No No
(Li et al., 2016) No Yes
(Jiang et al., 2017) No No
(Assouline et al., 2017) No Yes
(Doorga et al., 2019) No No
(Basurto et al., 2019) No Yes
(Amiri et al., 2021) No Yes

enter the input layer, and as the data moves through the hidden 
layers, the network performs computations and transformations, 
with each neuron processing the weighted sum of its inputs through 
an activation function. The final processed data is then produced 
at the output layer.

3.1.2. Extreme learning machine
Extreme learning machines (ELM), proposed by (Huang et al., 
2004), are feedforward neural networks with single hidden layer. 
They are known for their fast-learning speed, strong generalization 
ability, and capability to approximate any function. The algorithm 
for extreme learning machines works by first randomly assigning 
biases and weights to the hidden layer. Then, it computes the 
hidden layer output matrix by applying these weights, biases, and 
activation functions to the input data. Next, it calculates the output 
weight matrix by multiplying the Moore-Penrose inverse of the 
output matrix from the hidden layer with the training data matrix. 
Finally, this output weight matrix is used to make predictions on 
new data.

3.2. Deep Learning Models
3.2.1. Long-short-term-memory
The Long Short-Term Memory (LSTM) Neural Network 
(Hochreiter and Schmidhuber, 1997) is regarded as one of the top 
models for time series forecasting. According to Korstanje’s book 
(Korstanje, 2021), the LSTM cell significantly boosts long-term 
memory by enabling the learning of additional parameters. This 
capability makes it the most powerful Recurrent Neural Network 

(RNN) for forecasting, particularly effective with data showing 
long-term trends. Currently, LSTMs are recognized as state-of-
the-art models for forecasting (Korstanje, 2021).

3.2.2. Gated recurrent unit
The Gated Recurrent Unit (GRU) (Cho et al., 2014) is a modern 
Recurrent Neural Network (RNN) similar to the LSTM. It 
addresses the vanishing gradient problem seen in standard RNNs 
by utilizing update and reset units. These units decide what 
information needs to be passed to the output. They can be trained 
to retain information from several previous time steps without 
extending the temporal range too much or to discard irrelevant 
information for better predictions. With careful training, GRUs 
can perform exceptionally well, even in complex situations.

3.3. Ensemble Learning Models
3.3.1. Random forest
Random forests (RF) (Breiman, 2001) consist of several decision 
trees, where each tree is influenced by the values of a randomly 
chosen set of features, applying an identical distribution across 
all trees. With the increase in the number of trees in the forest, 
the generalization error approaches a limiting value. This error 
is affected by the effectiveness of the individual trees and their 
intercorrelation. Randomly choosing features for each node’s split 
results in error rates similar to those of Adaboost (Schapire, 2013) 
but are more resilient to noise.

3.3.2. Extreme gradient boosting
XGBoost, or eXtreme Gradient Boosting (Chen and Guestrin, 
2016), is an enhanced version of the gradient boosting algorithm. 
It is highly regarded for its effectiveness and is commonly used 
in machine learning competitions. XGBoost is known for its 
high predictive accuracy and is nearly 10 times faster than other 
gradient boosting methods. It includes several enhancements to 
prevent overfitting and improve overall performance. Suitable for 
both regression and classification tasks, XGBoost is designed to 
efficiently manage large and complex datasets.

3.4. Chaotic Model- Echo State Network
Chaos-based neural networks combine principles from chaos 
theory and neural networks to create models capable of complex 
behavior and pattern recognition. Echo State Networks (Jaeger, 
2001) are the most popular way to use the reservoir computing 
(RC) method (Shahi et al., 2022). RC is mainly based on the ideas 
of recurrent neural networks, but it has a simpler way of training. 
In RC, only the weights of the output layer are trained, whereas 
the values of other parameter are assigned randomly and not 
trained further. Even with this simplified approach, ESNs have 
been successful in predicting future steps in modeling chaotic 
dynamic systems and nonlinear time series without needing a lot 
of computing power (Bianchi et al., 2017).

3.5. False Nearest Neighbors
False nearest neighbors (Kennel et al., 1992) is a technique used 
to identify the suitable embedding dimension for a time series. It 
helps in identifying whether the reconstructed state space using 
a certain embedding dimension is sufficiently capturing the 
characteristics of the system that the time series represents. If the 
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embedding dimension is too low, nearby points in the reconstructed 
space might not actually correspond to neighboring points in 
the original space, leading to false results. FNN analysis helps 
in avoiding this by finding the minimum embedding dimension 
required to accurately represent the dynamics of the system. So, 
while the false nearest neighbors’ approach is primarily used for 
determining the appropriate embedding dimension, the process 
inherently involves embedding the time series data into a higher-
dimensional space. Therefore, it can be considered as a method 
for embedding time series data.

3.6. Bayesian Optimization-Tree-Structured Parzen 
Estimator
Bayesian optimization approach provides promising result in 
optimizing the objectives with high computational cost, and 
“black boxes” functions which do not have a clear explanation, 
as well as the functions that can only be evaluated by noisy 
mechanism (Garnett, 2023). It is especially useful for scenarios 
in which the function evaluations are costly, for example 
hyperparameter tuning in machine learning models, engineering 
designs optimization, or even experimental sciences where 
each measurement requires substantial resources. The Tree-
structured Parzen Estimator (TPE) is a popular Bayesian 
optimization (BO) technique known for its exceptional 
performance across numerous applications (Watanabe, 2023). 
TPE has been crucial for hyperparameter optimization in deep 
learning models, contributing to victories in Kaggle competitions 
(Watanabe and Hutter, 2022). Additionally, (Watanabe et al., 
2022) was the winner of the AutoML 2022 competition on 
“Multiobjective Hyperparameter Optimization for Transformers” 
with implementation of TPE.

3.7. Python Libraries
The following Python libraries are used for tasks ranging from 
data loading and preparation to model building and assessment, 
and finally to hyperparameter optimization and visualization of 
results: TensorFlow: For building and training the deep learning 
and neural network (NN) models, Pandas: For analysis and data 
manipulation. NumPy: For numerical operations. Matplotlib 
and Seaborn: For plotting and visualization. scikit-learn: 
For machine learning utilities, building RF algorithm, and 
implementation of false nearest neighbors’ approach. XGBoost: 
For building the XGBoost model. math: For mathematical 
functions. pyESN: For creating and working with Echo State 
Networks. Hyperopt: For hyperparameter optimization. Keras: 
From the TensorFlow package for additional model building 
and optimization (some functions are explicitly from Keras 
within Tensorflow).

3.8. Evaluation Metrics
The performance of the trained models is examined on unseen 
(test) data by analyzing the difference between real and forecasted 
values using five different metrics: Mean squared error (MSE), 
mean absolute error (MAE), mean absolute percentage error 
(MAPE), root mean squared error (RMSE), and R-squared (R2). n 
represents the number of data points or observations, yi denotes the 
actual value of the i-th observation and ˆiy  refers to the predicted 
value of the i-th observation.

3.8.1. Mean absolute error
This metric is determined by taking the average of the absolute 
differences between the actual and predicted values. MAE is 
calculated by using the following formula:

1

1 ˆ
n

i i
i

MAE y y
n

=

= −∑  (1)

3.8.2. Mean squared error
MSE is an evaluation metric that calculates the average of the 
squared differences between the actual and predicted values. It is 
determined by the following formula:
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3.8.3. Root mean squared error
RMSE is an evaluation criteria calculating the square root of the 
mean of the squared deviations from the actual and predicted 
values. It is defined as follows:
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3.8.4. Mean absolute percentage error
The Mean absolute percentage error (MAPE) is an evaluation 
indicator calculating the mean of the absolute percentage errors 
between the actual and predicted values. It makes the error scale-
independent and easier to interpret in relative terms. It is calculated 
by the below formula:
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3.8.5. R-squared
R-squared (R2) is an evaluation metric that measures the 
effectiveness of fit for a regression model. It indicates the 
extent to which the model’s predictions fit the actual data, 
with values ranging from 0 to 1, where 1 indicates perfect fit. 
It is defined as:
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ˆiy  is the predicted value of the i-th observation and y  is the mean 
of the actual values.

4. EMPIRICAL STUDY

4.1. Data
Data is collected from Konya Eregli Solar Power Plant (SPP), 
a 9.20 MWp SPP constructed as a project by “Tegnatia Enerji” 
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company, in the Ereğli district of the Konya city in Turkey, which 
has successfully been grid-connected as of April 2016.

Data consist of two parts; first part is the endogenous data, the 
generated energy time series of eight inverters of the SPP, with 
10 min time interval from June 06, 2021 to December 08, 2022, 
which is the target variable for every forecasting model included 
in this study. Second part is the exogenous meteorological data 
including the 10 min time interval ambient temperature and the 
solar cell temperature of the Konya Ereğli SPP for 2021 and 2022.

In the forecasting models of this study, the only variable being 
forecasted (target variable) is the energy production, however, 
there are different combinations of endogenous and exogenous 
input variables for the forecasting models. So, the time series 
forecasting problem that is studied within this paper is a 
multivariate input and univariate output time series problem, with 
combination of weather and temporal features as exogenous input 
variables. Using a multivariate approach in this context enables us 
to leverage the information from all the related input time series 
to better understand the dynamics and patterns within the data 
(Brownlee, 2018).

4.2. Data Cleaning and Preprocessing
The collected energy production data is preprocessed using Python 
programing. These steps include removing the missing values, 

modifying the scale of the data and removing outliers using Local 
Outlier Factor (LOF) (Aggarwal and Aggarwal, 2017). Clean raw 
data is shown in Figure 1. All the data analysis within this study 
is carried out in Python 3.10.13.

4.3. Exploratory Data Analysis
Analyzing the time series properties is essential for both researchers 
and policymakers, as energy production and consumption are 
closely tied to economic performance (Öztürk and Aslan, 2015). 
The Exploratory Data Analysis consists of methods and analyses 
which search for the key characteristics of the time series data. 
These analyses are investigating autocorrelation, seasonality and 
stationarity. The obtained features will lead us to perform needed 
tests and modifications in order to enter the modelling part. Some 
of the important features of the data can be found by plotting them 
and because of that, data visualization can be very helpful. Figure 1 
shows the energy production values of all the eight inverters.

4.3.1. Visualization
To simplify the computations, only one inverter is selected among 
the eight inverters data for this case study, which is the energy 
production data of inverter 4 shown in Figure 2.

4.3.2. Autocorrelation
The distance between each two peak values in the autocorrelation 
plot, presented in Figure 3 represents the seasonal length in our 

Figure 1: Energy production time series of all inverters in the collected data
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Figure 2: Energy production data in inverter 4. (a) shows the entire data (70973) datapoints and (b) shows the production data for (1000) datapoints

ba

Figure 3: Autocorrelation plot for inverter 4. (a) For the entire (70973) datapoints and (b) for (1000) datapoints

data. It was also clearly shown in the production plots, that the 
data has a daily seasonality. By calculation of two consecutive 
peak values’ distance, the obtained time is around 86,400 s, that is 
equal to 24 h indicating the seasonal length of our data. It can be 
seen in Figure 3 that the amplitude of the plot is reducing as the 
time passes. This refers to the change of the day length during the 
year, although the seasonal length will be constant in the whole 
year, because each day has 24 h in a year, but the length of the 
sunlight hours changes and days become shorter when getting 
closer to the winter and the changes between the sunrises and 
sunsets in the following days cause the shape of the presented 
autocorrelation plot.

4.3.3. Stationarity test
In the scope of Exploratory Data Analysis, the last criterion that 
needs to be evaluated is Stationarity. Augmented Dickey Fuller 
(ADF) test (Cheung and Lai, 1995) is implemented in Python 
for this purpose, by using the Stastsmodel library (Seabold and 
Perktold, 2010). With a highly negative test statistic and a very 
low P-value in the ADF test result, the null hypothesis of a unit 
root is confidently rejected. Therefore, the data is likely stationary, 
indicating that differencing may not be necessary for this time 
series.

5. RESULTS AND DISCUSSIONS

In this section we present the results of our study’s hyperparameter 
optimization results, using Tree-structured Parzen Estimator are 
given in section 5.1. Section 5.2 shows the forecasting results 
from the deep learning, machine learning, and ensemble learning 
approaches before and after the optimization. Section 5.3 discusses 
the chaotic analysis, embedding data results and forecasting results 
of the ESN model.

5.1. Hyperparameter Tuning
All the forecasting models in this study are optimized using 
Tree-structured Parzen Estimator. The optimized values of the 
hyperparameters for each model are reported in Table 2.

5.2. Deep Learning, Machine Learning and Ensemble 
Learning Models
Three groups of forecasting approaches: Deep learning, machine 
learning, and ensemble learning models are implemented on 
the endogenous energy production data of Konya Eregli SPP, 
integrated with ambient temperature and solar cell temperature 
exogenous variables, to forecast the energy production. A year 
of data with a 10-min time interval is used for training and two 
consecutive months are forecasted by each model. It is noteworthy 
that all the models performed in this section are evaluated across 
different number of time lags and different temporal exogenous 
variables extracted from timestamps, to select the configuration 
with the highest accuracy in forecasting. These temporal features 
are as follows: “day of year,” “hour,” “day of week,” “quarter,” 
“month” and “year.” The forecasting results showed that 
integration of temporal features and weather exogenous variables 
alongside with 4 time-lags of the endogenous variable (energy 
production historical data) creates the best configuration for the 
ensemble learning approaches (RF and XGBoost), providing the 
most accurate results. However, for the NN based approaches (ML 
and DL employed algorithms: FFNN, ELM, LSTM and GRU), 
integration of only weather exogenous variables with 5 time-lags 
endogenous inputs leads to the highest performance. The employed 
features structure for ML, DL and EL groups of models is shown 
in Figure 4.

The optimum configuration for both groups of the methods is 
demonstrated in Table 2. It is noteworthy to mention that for each 
model only the value of most important hyperparameters which 

a b
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Table 2: Optimized values of the hyperparameters
Model Hyper-Parameter Optimized 

value
LSTM LSTM units number Learning rate

Batch size
Dropout rate

128
0.0005

64
0.1004

GRU GRU units number
Learning rate
Batch size
Dropout rate

128
0.0002

32
0.2478

FFNN Hidden layers number
Neurons number
Learning rate
Batch size
Dropout rate

2
32

0.0014
64

0.0223
ELM Hidden Size

Weight lower bound
Weight upper bound
Regularization
L2 lambda

190
−0.72
0.86
L2

0.02
RF n_estimators

max_features
max_depth:
min_samples_split
min_samples_leaf

298
10
14
13
4

XGBoost colsample_bytree
gamma
Learning rate
max_depth
min_child_weight
n_estimators
subsample

0.982
0.26

0.2129
5

3.5568
398

0.7375
ESN Number of reservoir units

Sparsity of the reservoir connections
Spectral radius of the reservoir weights
Magnitude of noise to be added to the 
reservoir activations

778
0.021
0.357
0.0531

affect the model’s performance more strongly are reported in 
Table 2 for the sake of shortness, while there are more numbers 
of hyperparameters in each model that are optimized in this study 
with TPE algorithm.

Table 3 shows the forecasting result of each model, before and 
after optimization across all the calculated evaluation metrics, 
with most accurate forecasts highlighted in bold. It reveals that 
the forecasting accuracy by means of R2, RMSE and MSE is 
better in the LSTM model, however, the MAPE and MAE metrics 
indicates a better performance in the GRU model. In the ML group 
models, FFNN significantly performs better than ELM across 
all the metrics, and in the EL group, RF and XGBoost models’ 
performance is relatively the same. The comparison of the models 
across evaluation metrics can be better observed in Figure 5.

For future work, a potential direction would be to apply the 
proposed model to forecast solar energy production by integrating 
an IoT-based device connected to the cloud. This approach would 
facilitate the prediction of critical parameters affecting solar energy 
production and offer meaningful perspectives for optimizing 
energy generation. For instance, an alert system for predictive 
maintenance could be created by deploying the developed model 
on an Edge Device to monitor and analyze the real-time data and 
detect anomalies in solar power plants.

5.3. Chaotic Approaches
This section presents the results of embedding the time series 
energy production data using the FNN algorithm, as well as 
optimizing the embedding dimension by FNN itself in part 5.3.1. 
Then the optimized ESN model, with tuned hyperparameters 
that are reported in Table 2, is implemented both on the original 
time series data and on the embedded data, and the findings are 
summarized in Table 4 in section 5.3.2.

5.3.1. Optimization of the embedding dimension using false 
nearest neighbors
The FNN function defined to embed the data in this study, performs 
the false nearest neighbors analysis on the input time series data 
via the following steps:
•	 Embedding the time series data
•	 Calculating the distances between each embedded point and 

its nearest neighbor in the embedded space

Figure 4: Input features structure. (a) ML and DL groups of models. (b) EL models

a b
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Table 3: Forecasting results of ML and DL models
Metrics/methods R-squared MAPE RMSE MSE MAE
Long-short-term memory

Before optimization 0.976 0.13 7.04 49.57 3.81
After optimization 0.979 0.12 6.70 44.91 3.42

Gated recurrent unit
Before optimization 0.976 0.12 7.13 50.87 3.68
After optimization 0.978 0.11 6.84 46.76 3.31

Random forest
Before optimization 0.971 0.12 8.06 65.00 3.91
After optimization 0.971 0.12 8.06 64.96 3.89

Extreme gradient boosting
Before optimization 0.961 0.14 9.16 83.84 4.37
After optimization 0.972 0.13 7.71 59.40 3.88

Extreme learning machine
Before optimization 0.76 0.44 22.76 518.00 13.37
After optimization 0.91 0.24 13.88 192.73 7.17

Feed forward neural network
Before optimization 0.972 0.12 7.76 60.16 3.75
After optimization 0.973 0.12 7.64 58.39 3.86

Table 4: Forecasting results of ESN model
Metrics/methods R-squared MAPE RMSE MSE MAE
Echo state network – original data

Before optimization 0.961 0.17 9.26 85.71 5.13
After optimization 0.964 0.16 8.85 78.27 4.94

Echo state network – embedded data
Before optimization 0.972 0.13 8.80 77.48 5.02
After optimization 0.972 0.13 8.79 77.26 4.99

Figure 5: Comparison of models’ performance

•	 Perturbing each point in the embedded space by adding 
random noise

•	 False nearest neighbors calculation
•	 Calculation of FNN Ratio, denoting the share of false nearest 

neighbors in the total set of points
•	 Returning the embedded data.

The FNN ratio that is calculated by this function provides insights 
into whether the chosen embedding parameters effectively 
capture the underlying dynamics of the time series. Also, it 
indicates the proportion of points in our embedded phase space 
that are falsely identified as nearest neighbors after perturbation. 
In this section we systematically vary the embedding dimension 
(m) and calculate the FNN ratio for each dimension. We define 
the maximum dimension to be 100 and run the optimization 
algorithm for this range. The optimal embedding dimension 
is often chosen as the smallest value of m for which the FNN 

ratio stabilizes or reaches a minimum, which is found to be 
70 in our analysis. The FNN ratio after optimization of the 
embedding dimension is changed from 0. 277 to 0.007 for our 
case study dataset, which is the merged data of target variable 
and exogenous variables.

Our obtained FNN ratio is considered as a very low ratio (bellow 
0.05) and indicates that the reconstructed phase space with the 
optimum embedding dimension of 70, more accurately captures the 
underlying dynamics of the system generating the time series data. 
This also suggests that there are relatively very few false nearest 
neighbours, meaning that nearby points in the embedded space 
remain close after perturbation. This enhanced representation 
increases confidence in using the embedded data for further 
analysis or modelling tasks such as prediction, as it better preserves 
the structure and relationships present in the original time series, 
which can be clearly observed in the presented prediction results 
in section 5.3.2.

We can visualize the embedded phase space to explore the 
structure of the data and identify regions where false nearest 
neighbors occur. Since the embedded phase space is typically 
high-dimensional, we need to use dimensionality reduction 
techniques such as principal component analysis (PCA) (Jolliffe, 
2005) to project the data onto a lower-dimensional space for 
visualization. PCA is a dimensionality reduction technique that 
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converts high-dimensional data into a lower-dimensional space, 
aiming to preserve as much variance in the data as possible. The 
principal components are the orthogonal axes in the new lower-
dimensional space that capture the directions of maximum variance 
in the original data.
•	 We use PCA to reduce the dimensionality of the embedded 

phase space to two dimensions.
•	 The embedded data is then transformed using PCA.
•	 Finally, we plot the transformed data in the two-dimensional 

PCA space.

The visualization of the embedded phase space using PCA for 
dimensionality reduction is presented in Figure 6. Regions where 
points are clustered closely together may indicate regions of the 
phase space with similar dynamics, while regions with more 
scattered points may indicate areas where false nearest neighbors 
occur. Principal component 1 (PC1) and Principal component 
2 (PC2) are the first and second principal components obtained 
from the PCA of the embedded phase space data. When we 
apply PCA to the embedded phase space data, each data point 
in the embedded space is transformed into a new point in the 
PCA space, represented by its coordinates along the principal 
components.

In Figure 6, PC1 and PC2 correspond to the horizontal and 
vertical axes, respectively. These axes are chosen such that PC1 
captures the direction of maximum variance in the data, followed 
by PC2 capturing the direction of the second maximum variance 
orthogonal to PC1. The scatter plot of the embedded phase space 
in the PCA space shows the distribution of the data points along 
these principal components. Each point in the plot represents an 
embedded vector from the original time series data, projected onto 
the two principal components.

5.3.2. ESN model
To observe the effect of the chaotic analysis explained in 
section 5.3.1 more precisely, ESN model which is a chaos based 
neural network model successful in predicting future steps in 
nonlinear time series and modeling chaotic dynamic systems, 
is implemented 2 times: first on the original time series data, 
and 2nd time on the embedded time series energy production 
data. As the results reveal in the Table 4, the forecast accuracy 
across all the evaluation metrics, only except the MAE, has been 
improved when implementing the ESN model on the embedded 
time series data with reconstructed phase space comparing to 
the original data.

6. CONCLUSION

Forecasting solar energy output is essential for optimizing 
the efficient use of this renewable resource. In this study, our 
objective is to meet the demand for precise energy production 
forecasting by using data from a 9.20 MWp SPP. We employ deep 
learning, machine learning, and chaos-based forecasting models 
for comparison. The findings confirm that the implemented DL, 
ML, and chaos-based neural network models perform well for 
forecasting time series energy production data in our specific 
scenario. They also provide the optimal parameters for predicting 
solar energy production with each forecasting algorithm. All the 
nonlinear implemented forecasting models in this study, with the 
optimized configuration, succeed in providing accurate forecasts 
with R-squared metric above 0.97 except the ELM model with 
R-squared: 0.91. By comparing the forecasting results of ML 
and DL models, before and after optimization across all the 
calculated evaluation metrics, it is seen that the accuracy metrics of 
R-squared, RMSE and MSE is best in the LSTM model among all 
the models, and the MAPE and MAE metrics achieves their lowest 
value in the GRU model. It can be concluded that the performance 
of the implemented DL models in this study outperforms the ML 
models.

By implementing chaotic analysis and optimizing the embedding 
dimension using the FNN algorithm, we determined the optimal 
dimension to be 70. The FNN ratio improved from 0.277 to 0.007 
for our dataset, indicating that the reconstructed phase space with 
this optimal embedding dimension could more accurately capture 
the system’s underlying dynamics generating the time series data. 
This enhances confidence in using the embedded data for further 
analysis or modeling with chaos-based approaches, as it better 
preserves the structure of the original time series. This assumption 
is validated by the results of implementing the ESN model on 
the embedded time series data, which show improvements in all 
accuracy metrics except MAE. Notably, the R-squared metric 
exceeds 0.97.

By identifying the optimal configuration of the implemented 
algorithms, particularly the deep learning models LSTM and 
GRU, which provide the most accurate forecasting results, we offer 
useful insights for practical applications. These insights can help 
improve solar energy systems, support a sustainable future, and 
reduce reliance on non-renewable resources. Additionally, when 
applied to edge devices for predicting maintenance needs in solar 
power plants, these insights can enhance operational efficiency.

Furthermore, this research contributes to the Goal 7: Affordable and 
Clean Energy, and Goal 13: Climate Action, of the United Nations 
Sustainable Development Goals. By enhancing the predictability 
and reliability of solar power generation, this work supports the 
global effort to increase renewable energy adoption, improve 
energy efficiency, and mitigate the impacts of climate change.
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