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ABSTRACT

Clean energy, with its focus on environmental sustainability and efficiency, has gained significance as concerns over the impact of traditional energy 
growth. However, there is limited evidence on the value of clean energy investments. This paper explores the role of clean energy in a balanced 
investment portfolio by examining two traditional energy assets (crude oil and natural gas) and two clean energy assets (SPDR S&P Kensho Clean 
Power ETF and iShares Global Clean Energy ETF). Using a time-varying parameter vector autoregression (TVP-VAR) model on daily data from 
October 2021 to January 2024, we analyze the evolving connectedness between these assets. Our results highlight dynamic interactions, with green 
finance indices like CNRG acting as net shock transmitters, while traditional energy indices, such as WTI and gas, primarily receive shocks. The 
analysis suggests that green assets, particularly ICLN, enhance portfolio stability and hedging efficiency, especially in minimum correlation and risk 
parity portfolios. Fossil fuels, especially gas, exhibit higher volatility, requiring careful portfolio management. Ultimately, integrating ESG criteria 
and adapting investment strategies to market conditions may enhance responsible investing and long-term value creation.

Keywords: Clean Energy, Traditional Fuel, Dynamic Quantile Connectedness, Wavelet Analysis 
JEL Classifications: C32, C5, F3, G15

1. INTRODUCTION

The relentless drive of global economic growth continuously fuels 
the demand for energy, prompting nations to secure energy supplies 
while maintaining reasonable prices through the development of 
integrated energy markets. However, the reliance on fossil fuels, 
which has underpinned industrial advancement for centuries, has 
significantly contributed to climate change and environmental 
degradation, raising concerns about sustainability. Consequently, 
renewable energy has emerged as a crucial alternative, offering a 
solution to the sustainability challenges many countries face. A new 
concept is emerging: “dirty energy stock indexes” which pertains to 
corporations that engage in the production or extraction of energy 

from non-renewable resources, such as coal, oil, and gas; in contrast 
to “clean energy stocks” which refers to companies that generate 
renewable energy through means such as wind, solar, and hydropower.

The shift to renewable energy has been boosted recently by 
Russia’s unexpected invasion of Ukraine in February 2022, an 
event that has exacerbated uncertainties over access to fossil 
fuels. During this crisis, supply constraints pushed the global oil 
price to its highest level in eight years. This war has significant 
implications given the dependence of many European countries 
on Russian oil and gas exports. This geopolitical episode has 
heightened the urgency for diversifying investment portfolios to 
include alternative assets, such as clean energy stocks, to mitigate 
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risks associated with volatile fossil fuel markets. Although, it 
is difficult to assess the ultimate impact of the war on global 
energy markets and the financial sector (Adekoya et al., 2022; 
Lo et al., 2022), the war’s influence on energy policies in Europe 
could signify a pivotal moment, driving substantial investments 
into green energy sectors. Patt and Steffen (2022) provide early 
evidence that the war has shifted public policy support towards 
phasing out fossil fuels and promoting clean energy alternatives. 
Recent reports indicate a significant increase in renewable energy 
investments in Europe, spurred by policy shifts and a commitment 
to energy independence from Russian fossil fuels (IEA, 20231).

It should also be noted that the switch to clean energy began 
long before the war between Russia and Ukraine. In fact, the 
21st Conference of the Parties (COP21) set a global agenda to combat 
climate change, leading to significant investments in renewable 
energy technologies, including solar, wind, hydro, and geothermal 
power. A few years later, and despite the COVID-19 pandemic, 
global investments in renewable energy soared, highlighting a 
robust commitment to transitioning towards sustainable energy 
sources (Ahmad, 2017; Ding et al., 2022; Lundgren et al., 2018; 
Sharma et al., 2021). The WilderHill Clean Energy Index, has 
become a benchmark for tracking the performance of companies 
in the clean energy sector, reflecting the industry’s growth and its 
appeal to investors seeking to align financial objectives with climate 
goals (Chen et al., 2022; Maghyereh et al., 2019).

Globally, over the last fifteen years, the clean energy sector has 
seen remarkable growth, with global investment in the energy 
transition hit $1.77 trillion in 2023, up 17% on the previous 
year and a new record (Bloomberg New Energy Finance, 2023). 
Despite the continued dominance of fossil fuels, the push for 
decarbonization, particularly post-COP26, has mobilized regulatory 
bodies, companies, financial institutions, and investors to prioritize 
clean energy investments (Farid et al., 2023; Papageorgiou et al., 
2017; Ren and Lucey, 2022). Moreover, COP27 has emphasized the 
need for accelerated deployment of renewable energy technologies 
to meet the Paris Agreement targets, further boosting investment 
flows into the sector (UNFCCC, 2023).

This metamorphosis in the energy market has prompted a number 
of researchers to study various relationships between clean energy 
and other assets. The extant literature on the markets for dirty and 
clean energy reveals two predominant perspectives. The initial 
perspective emphasizes the replacement of conventional energy 
sources with cleaner alternatives (Henriques and Sadorsky, 2008; 
Bondia et al., 2016; Ferrer et al., 2018; Huang et al., 2011). This 
theory posits that an increase in oil prices incentivizes energy 
investors to transition towards renewable energy sources, resulting 
in a surge in clean energy adoption. This transition leads to higher 
profits for the renewable energy industry, culminating in robust 
performance of clean energy stocks in the capital markets. The 
second perspective, known as the dissociation hypothesis, posits 
that clean energy and conventional energy function within distinct 
markets and are not amenable to direct comparison (Ahmad, 2017; 
Attarzadeh and Balcilar, 2022; Yilanci et al., 2022).

1  International Energy Agency: www.iea.org

On the other hand, other studies focus more on the impact of 
clean energy on portfolio diversification. Ahmad et al. (2018) 
demonstrated effective diversification using different assets, 
including clean energy stocks. Moreover, Saeed et al. (2020) 
investigated the use of clean energy assets as a hedge strategy 
against non-renewable energy investments. Other studies consider 
the relationship between clean energy stocks and the commodity 
market, while others researches examine the diversification 
benefits of combining oil and clean energy stocks in the same 
portfolio during periods of stress (Bouri et al., 2019; Junttila et al., 
2018; Reboredo et al., 2017).

Given the intertwined nature of clean and dirty energy markets, 
understanding the volatility spillovers between these sectors and 
stock indices is essential for improving risk management strategies 
amidst significant geopolitical and environmental shifts. This study 
aims to investigate the dynamic interactions between clean and 
dirty energy assets, particularly in light of the ongoing Russia-
Ukraine conflict and evolving environmental regulations, providing 
insights into portfolio diversification strategies in the context of a 
transitioning global energy landscape. The goal of this analysis is 
to investigate whether clean energy indexes may act as a hedge and 
safe haven for dirty energy stock indexes. This purpose is achieved 
by employing a time-varying parameter vector auto-regression 
(TVP-VAR) econometric framework-known for its ability to 
capture this type of relationship- and analyzing a comprehensive 
dataset spanning from October 2021 to January 2024.

Previous studies have highlighted the relationship between 
energy and the financial market under crises and extreme events. 
However, there are few studies comparing the impact of the Russia-
Ukraine war and the COVID-19 pandemic on the nexus between 
dirty and green energy and the financial market. Therefore, the 
connectedness analysis would inform investors about the risk 
diversification strategy and the optimal asset allocation and open 
up new investment opportunities for market participants. Thus, 
identifying these linkages between dirty and green energy is crucial 
not only for investors developing effective investment strategies 
but also for governments and regulators aiming to manage 
potential disruptions in the energy and stock markets, to improve 
the progress of renewable energy and attain sustainable energy 
objectives, in light of climate change and pandemics.

We contribute to the literature in several ways. First, we 
investigate the dynamic linkages between global stock markets 
and both renewable and non-renewable energy indices to identify 
significant shifts in market dependencies. Second, we analyze 
the effectiveness of portfolio optimization strategies involving 
green energy, evaluating the benefits and drawbacks of including 
renewable energy stocks. Third, we estimate hedging ratios to 
provide actionable insights for investment portfolio managers. 
Finally, we offer a comprehensive analysis of the relative volatility 
of clean energy portfolios compared to traditional assets, providing 
valuable information for market participants and policymakers in 
the context of environmental sustainability.

The motivation for this study is to determine the optimal 
integration of green energy investments into international 
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portfolios to maximize returns while adhering to sustainable 
investment principles. This involves examining the dynamic 
interactions and potential advantages of including green energy 
assets in a diversified investment strategy.

Our primary research question is: Do green investments enhance 
the value of a dirty energy investment portfolio?

This question holds significance for three key audiences. Firstly, the 
investment community seeks innovative opportunities and clarity 
on whether green assets can add value to existing investments. 
Secondly, regulators, policymakers, and compliance specialists are 
interested in understanding whether financial performance differs 
significantly among various asset classes, which could impact policy 
effectiveness. Lastly, the shift toward green energy investments 
underscores society’s increasing awareness of the environmental 
costs of fossil fuel dependence. Investments in renewable energy 
signify efforts to reduce air pollution and mitigate climate change.

The remainder of this study is organized as follows. Section 2 
reviews the literature, while Section 3 provides a description 
of the data used in our empirical analysis and the econometric 
methodology for estimating volatility connectedness. Section 4 
discusses the empirical findings. Finally, Section 5 concludes with 
some discussion of the implications of the findings.

2. LITERATURE REVIEW

Over the last few decades, researchers are increasingly focusing 
on the development of studies and initiatives for environmental 
and climate risk management, in order to contribute both directly 
and indirectly to the promotion of environmentally friendly 
behaviour over the next decades. More specifically, there has been 
an increased interest in understanding the relationship between 
dirty and clean energy, particularly in light of events such as the 
COVID-19 pandemic in 2020 and energy market instability in 
2022. According to Fuentes and Herrera (2020), Naeem et al. 
(2022) and Ren and Lucey (2022), exploring the linkages between 
these two energy sources is critical to advancing renewable energy 
development and achieving sustainable energy goals.

Ji and Fan (2016) provided a significant contribution to this field 
by employing a time-varying parameter vector autoregression 
(TVP-VAR) model to analyze the relationships between renewable 
energy stocks and traditional energy commodities. Their research 
highlighted that the connectedness between these assets is not static 
but evolves over time. This evolving nature is driven by various 
factors, including market conditions, technological advancements, 
regulatory changes, and geopolitical events. The TVP-VAR model 
is particularly useful in capturing these dynamic interactions as 
it allows for the parameters of the model to change over time, 
reflecting the real-world fluctuations in the energy markets. Ji 
and Fan’s findings suggest that during periods of high volatility or 
economic stress, the relationships between clean and dirty energy 
assets can change significantly. For instance, during an oil price 
shock, the correlation between oil prices and renewable energy 
stocks may increase as investors reassess the relative value of 
clean versus dirty energy.

Other studies examine the impact of traditional energy prices 
(specifically oil prices) on the adoption and performance of 
renewable energy sources and the associated markets. Zhu et al. 
(2022) show that oil price increases negatively affect economic 
activity and stock prices. This motivates producers and investors to 
seek alternative energy sources. Kumar et al. (2012) find that rising 
oil prices encourage the substitution of renewable alternatives for 
conventional energy sources. The authors also find that the carbon 
price yield is not currently a relevant factor for the stocks of clean 
energy companies. Similarly, Hanif et al. (2021) examine the 
relationship between clean energy stocks and European emissions 
prices and find a strong long-term spillover between clean energy 
indices and the carbon price, with short-term volatility spillovers 
mainly between carbon prices and renewable energy indices.

Fahmy (2022) for his part, highlights that the growing awareness 
of climate risks among investors and their preference for green 
investments, affects the relationship between clean energy prices 
and oil and technology stocks.

Many researchers (Bondia et al., 2016; Ferrer et al., 2018; Wang 
and Cai, 2018; Attarzadeh and Balcilar, 2022) have studied the 
synchronisation trends between oil prices, technology, financial 
variables and clean energy indices. According to Bondia et al. 
(2016), the stock prices of alternative energy companies are 
influenced by the stock prices of technology companies, oil prices, 
and short-term interest rates. Ferrer et al. (2018) provide evidence 
that crude oil prices are not the main driver of the stock market 
performance of renewable energy companies, both in the short 
and long term. This suggests a disconnect between the alternative 
energy sector and the conventional energy market. Wang and Cai 
(2018) argue that the carbon market significantly explains the 
stock price movements of clean energy companies, while the stock 
prices of clean energy companies are also influenced by the carbon 
market. Attarzadeh and Balcilar (2022) analysed the volatility 
spillovers between renewable energy, oil and technology stock 
markets from 2004 to 2020 and found a bidirectional spillover 
effect, with the oil market acting as the main recipient of volatility.

In a more recent study, Ghabri et al. (2021) studied the impact of 
fossil energy market shocks on clean energy stock markets during 
the COVID-19 pandemic. The authors found that the crash in crude 
oil prices led to significant shocks in the clean energy market. In 
addition, the declaration of COVID-19 as a global pandemic led to 
an increase in natural gas and renewable energy prices following 
a substantial crash.

Further researches investigate the relationship between oil prices 
and clean energy stocks, particularly focusing on the nature 
and strength of this relationship over different time periods and 
market conditions. Specifically, Zhang et al. (2020) use wavelet 
quantile-on-quantile methods and find that the impact of oil price 
shocks on clean energy stocks varies across investment horizons 
and quantiles is asymmetric in the long run. Similarly, Yahya 
et al. (2021) investigated the relationship between oil prices and 
clean energy stocks and found a non-linear, long-run relationship 
between the two asset types. They confirmed that clean energy 
assets have been the dominant driver of oil prices in the recent 
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post-financial crisis period. However, the global trend towards 
renewable energy remains uncertain after the Russian invasion. 
Vrînceanu et al. (2020) show that there is a weak link between oil 
and renewable energy markets, suggesting that the development 
and progress of the renewable energy industry is relatively 
unaffected by changes in oil prices.

More recently, Avazkhodjaev et al. (2022) study the shocks between 
renewable energy prices and clean energy stock prices from 2010 
to 2021. They found that negative shocks outweigh positive shocks 
in renewable and clean energy production. They also found that 
renewable energy production prices have a significant impact on 
the stock prices of green economy companies, either positively 
or negatively. Farid et al. (2023) examined the co-movements 
between clean and dirty energy stock indices before and after the 
COVID-19 pandemic. Using a comprehensive sample of dirty 
energy stocks such as crude oil, fuel oil, diesel, gasoline and 
natural gas, the study found weak linkages between short-term 
clean and dirty energy stocks and a notable segmentation effect 
between dirty and clean energy markets.

Further studies have built on this foundation, exploring the 
implications of these dynamic interactions for portfolio diversification 
and risk management. For example, Reboredo (2015) examined the 
co-movement between oil prices and renewable energy indices 
using copula models, finding that the dependency structure is indeed 
time-varying and influenced by market regimes. During periods 
of market turmoil, the safe-haven properties of renewable energy 
assets become more pronounced, offering potential diversification 
benefits. The study conducted by Dias et al. (2023) covering the 
period 2018–2023 for five clean energy indexes and four dirty 
energy indexes examines whether clean energy indexes may act as a 
hedge and safe haven for dirty energy stock indexes during periods 
of market uncertainty. Their results indicate that during periods of 
global economic uncertainty, clean and dirty energy stock indices 
fail to demonstrate the qualities of hedge or safe-haven assets. These 
indexes fail to offer effective protection against market downturns 
or ensuring stability during economic turbulence.

Additional studies are currently investigating the link between 
conventional and clean energy prices and their impact on the 
composition of the investment basket. For example, Managi 
and Okimoto (2013) find a positive relationship between non-
renewable energy prices and clean energy prices, highlighting the 
similarity of market reactions to clean energy and technology stock 
prices. He (2020) examines the risk management implications and 
diversification benefits of non-renewable energy portfolios, providing 
robust evidence of a time-varying dependence and asymmetric 
relationship between oil and East Asian stock markets. Ahmad 
(2017) finds that dynamic hedging performance suggests that the 
clean energy index, when combined with oil futures, may offer more 
profitable hedging opportunities than the technology index.

3. DATA AND METHODOLOGY

3.1. Data
The data for this study encompasses indices from both the green 
finance (clean energy) and traditional energy (dirty energy) sectors 

over the sample period from October 26, 2021, to January 5, 2024. 
For the green finance sector, the indices used are the SPDR S&P 
Kensho Clean Power ETF (CNRG) and the iShares Global Clean 
Energy ETF (ICLN). For the traditional energy sector, the indices 
considered are Crude Oil (WTI) and Natural Gas (GAS). The 
figure 1 illustrate daily returns for studied indices highlighting 
distinct volatility patterns. Traditional energy indices (WTI 
and GAS) exhibit more pronounced and frequent fluctuations, 
indicating higher volatility compared to the relatively stable clean 
energy indices (ICLN and CNRG). This contrast underscores the 
differing risk profiles of clean and traditional energy assets, with 
fossil fuels showing greater sensitivity to external shocks.

Descriptive statistics for these indices are detailed in table 1. The 
variance, indicative of the return volatility, is highest for GAS 
and lowest for the green finance indices (ICLN and CNRG), 
suggesting greater price fluctuations in the energy commodities. 
The skewness values show that the return distributions of ICLN 
and CNRG are positively skewed while the return distributions 
for WTI and GAS are negatively skewed. The kurtosis values, 
all significantly different from zero, indicate that the return 
distributions exhibit heavy tails and sharp peaks compared to 
a normal distribution. The Jarque-Bera test results confirm the 
non-normality of the return distributions for all indices. The 
Elliott-Rothenberg-Stock (ERS) unit-root test results indicate that 
all series are stationary. The Portmanteau tests for autocorrelation 
(Q[20] and Q2[20]) show significant autocorrelation in the returns 
and squared returns series for most indices, suggesting persistent 
return dynamics. Kendall’s tau rank correlation coefficients reveal 
a strong positive correlation between the green finance ETFs 
(ICLN and CNRG), suggesting that they move together in response 
to market conditions. The correlations between the green finance 
indices and the energy commodities (WTI and GAS) are positive 
but much lower, reflecting the distinct dynamics and influences 
affecting these sectors.

3.2. Methodology
The analysis is conducted in three stages. The first stage involves 
econometric modelling and the immediate interpretation of 
connectedness measures. The second stage focuses on portfolio 
construction and evaluation. The final stage is dedicated to 

Table 1: Descriptive statistics
Measures ICLN CNRG WTI GAS
Mean −0.001 −0.001 0.000 −0.001
Variance 0.0001*** 0.0001*** 0.001*** 0.002***
Skewness 0.524*** 0.366*** −0.644*** −0.325***
Ex.Kurtosis 1.363*** 0.537** 2.303*** 0.426*
JB 67.476*** 18.799*** 158.996*** 13.779***
ERS −9.792*** −7.960*** −8.144*** −10.692***
Q (20) 17.048* 9.018 18.698** 14.040
Q2 (20) 28.890*** 12.084 48.604*** 27.194***

Kendall’s tau correlations
Variables ICLN CNRG WTI GAZ
ICLN 1.000*** 0.781*** 0.100*** 0.059**
CNRG 0.781*** 1.000*** 0.108*** 0.067**
WTI 0.100*** 0.108*** 1.000*** 0.063**
GAS 0.059** 0.067** 0.063** 1.000*
Note: ***significance at 1%, **significance 5%, *significance at 10%.  
ERS: Elliott-Rothenberg-Stock
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robustness testing, where wavelet theory is employed to decompose 
the uncertainty data into various frequency components. The 
empirical methodology for modeling dynamic connectedness 
in a system of variables involves several key steps. Firstly, a 
multivariate Kalman filter TVP-VAR (Time-Varying Parameter 
Vector Autoregression) algorithm is implemented. Following this, 
the TVP-VAR is converted to a TVP-Variance Moving Average 
(TVP-VMA). This transformation allows the parameters and error 
variances to vary over time. These time-varying parameters and 
error variances form the foundation for the generalized impulse 
response functions (GIRF) and generalized forecast error variance 
decompositions (GFEVD). These tools help in determining the 
extent to which a variable “i” is influenced by others and how 
much it influences all other variables. By summing the shares of 
the error variance for variable “i” due to all other variables “j”, the 
total directional connectedness FROM all others is established, 
indicating the influence of all other variables on variable “i”. 
Conversely, calculating the influence of variable “i” on all 
other variables “j” provides the total directional connectedness 
TO all others, which is derived by accumulating the effects 
(error variance) that variable “i” has on each other variable’s 
forecast error variance. The net total directional connectedness 
is then obtained by subtracting the FROM measure from the TO 
measure (TO-FROM). Finally, the average amount of network co-
movement, expressed as a percentage, is summarized in the total 
connectedness index (TCI). According to Monte Carlo simulations 
presented in Chatziantoniou and Gabauer (2021) and Gabauer 
(2021), it is shown that the own variance shares are by construction 
always larger than or equal to all cross-variance shares.

Then, to assess the financial significance of our findings, we 
will analyze historical investment performance by conducting 
back tests on portfolios, the estimated time-varying variance-
covariance matrix of the TVP-VAR model is used for portfolio 
construction in the spirit of Antonakaksis et al. (2021). The 
assumptions underlying this analysis are that the investor can 
directly acquire the index (assuming there is an investable tracker 
or a similar investment vehicle for the index), that the investor is 
focused solely on investing in green ETFs, and that the investor 

is open to international investment opportunities. For robustness 
check, we use four approaches portfolio management based 
on time-varying connectedness. Finally, as Antonakaksis et al. 
(2021), recognizing that economic decisions and variables (both 
macroeconomic and financial) tend to respond differently to short-, 
medium-, and long-term fluctuations in uncertainties, we employ 
wavelet theory to break down the uncertainty data into various 
frequency components. We then conduct spillover analysis for each 
frequency across the examined assets. This study represents the first 
exploration of uncertainty spillovers between clean energy ETFs 
and commodities, integrating both time and frequency dimension.

3.2.1. Modelling time-varying connectedness using a TVP-VAR
Here, we describe the key econometric structure of the TVP-VAR 
model. For simplicity, we present it as a first-order VAR, which 
our later empirical work, guided by the Bayesian information 
criterion, confirms as the appropriate lag order. The TVP-VAR 
model can be expressed as follows:

yt = ∅t yt-1 + εt (εt│Ft-1~N(0, Ht)) (1)

vec(∅t) = vec∅t-1 + ϵt (ϵt│Ft-1~N(0, ωt)) (2)

Ft-1 represents all information up to t–1.yt is the return series, and εt 
is the error variance m × 1 dimensional vectors, ∅t and Ht are m × m 
dimensional matrices with, handle the time-varying error variance 
and parameter variance, respectively, indirectly accounting for 
changes in volatility. ϵt and vec(∅t) are m2 × 1 and ωt is a m2 × m2 
dimensional matrix with ϵt is the error term captures the random 
fluctuations in the evolution of the VAR model parameters over 
time. To calculate the GIRF and GFEVD, the TVP-VAR must first 
be converted into its TVP-VMA representation using the Wold 
representation theorem, which states that

z z At iti

p
t i t it t jj t= ∅ + = +

= − −=

∞∑ ∑1 1
ε ε ε� � � �� �  (3)

zt is the vector of endogenous variables at time t, p represents order 
of the VAR process, indicating the number of lags considered in 

Figure 1: Returns
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the model. ∅it is the coefficient matrix associated with zt. ϵt is the 
vector of errors for the VAR model. Ait is the coefficient matrix 
associated with the error ϵt. GIRFs, where K is the forecast horizon, 
are not contingent on or influenced by the structure or order of 
the errors. The GIRF approach effectively captures the dynamics 
among and between all variables j. This can be expressed by:

GIRF(φij,t (K))

GIRF K H F H A Hjj t jj t K t t t( , , ) ,
/

,−
−=1
1 2   (4)

The GFEVD then demonstrates each variable’s distinct contribution to 
the forecast error variance of variable i, indicating the extent to which 
one variable, in percentage terms, influences the forecast error variance 
of another variable in the system. This can be expressed as follow:

GFED K
GIRF

GIRF
GIRF Kij t

t

K
ij t

j

m
ij t

ij tj

m
,

,

,

,� , ( )( ) = −

−

=

∑
∑

∑1

1 2

2 1
==

=
=∑

1

1

,

( ) ,,,
GIRF K mij ti j

m
 (5)

Having these measures for GIRF and GFEVD at our disposal, 
we can effectively quantify the influence of variable iii by others, 
as well as the reciprocal influence of variable i on all others. 
Moreover, we can assess whether variable iii has a greater impact 
on others than it is impacted by them. To achieve this, we utilize 
the following three metrics:

The total directional connectedness FROM all others, is computed 
as follows:

FROM
GFED

GFED
i j t

j i j

m

i

m←
= ≠

=

∑
∑

,

,
*

1

1

100  (6)

The influence of all the others on variable i has to be strictly below 
100% since the influence of i to itself has been excluded.

The total directional connectedness TO all others:

TO
GFED

GFED
i j t

j i j

m

j

m→
= ≠

=

∑
∑

×,

,1

1

100  (7)

It is common practice to analyze metrics of total system 
connectedness. While these measures do not offer the same level 
of detail as those described earlier, they provide a single metric 
that indicates whether overall patterns of connectedness within 
the system are weak or strong. This metric is known as the Total 
Connectedness Index (TCI). Based on Monte Carlo simulations 
outlined in Chatziantoniou and Gabauer (2021) and Gabauer 
(2021), it has been demonstrated that the shares of variance 
attributable to an individual variable are always greater than or 
equal to the shares of variance attributable to all other variables. 

This implies that the TCI falls within the range of 0 1
,
m

m
−





. 

Since we are interested in expressing the average level of network 
co-movement as a percentage, which should fall between 0 and 
1, a slight adjustment to the TCI is necessary:

Neti,t (K) = TOi→j,t–FROMi←j,t (8)

Finally, the definition of TCI can be modified to obtain pairwise 
connectedness index (PCI) scores between variables i and j as 
follows:

TCI K
Adj GFED

k
TCI Kt

e i j i j

m

t
e( ) =

−
< ( ) <= ≠∑ ,� ,

�
1

0 1with  (9)

( )e
tTCI K  is the adjusted Total Connectivity Index for forecast 

horizon K. This index measures the average amount of network 
co-movement among variables for this time horizon. Adj-GFED 
represents the Adjusted-Generalized Forecast Error Variance 
Decomposition (Adj-GFEVD) between variables i and j for forecast 
horizon K. It quantifies the contribution of variable j to the forecast 
error variance of variable i, adjusted for the impact of other 
variables in the system. The measures outlined above illustrate 
the extent and severity of econometric connectivity between the 
various bond markets we examine. These metrics help bridge the 
gap between statistical and economic significance and concretely 
demonstrate the financial materiality of our findings. Ultimately, 
they address the crucial question of whether recognizing the green 
credentials or orientation of bonds leads to a financial premium.

3.2.2. Portfolio implications: Dynamic allocation and risk 
assessment
3.2.2.1. Minimum variance approach
One of the most widely used methods in portfolio construction is 
the Minimum Variance Portfolio (MVP) approach. This procedure 
aims to create a portfolio with the lowest possible volatility by 
incorporating multiple assets, as introduced by Markowitz (1959). 
The portfolio weights can be determined using the following formula:

OW
Var Cov I

I Var Cov I
t

t

*

�
=

−[ ]
−[ ]

−

−

1

1
 (10)

Here, OW* is portfolio weight vector, I is a m-dimensional vector 
of ones, and Var Cov t−[ ]−1  represents the m × m conditional 
variance-covariance matrix for period t.

3.2.2.2. Minimum connectedness approach
Building on the concepts of the previously mentioned portfolio 
techniques, we introduce the minimum connectedness portfolio 
(MCoP). This approach utilizes pairwise connectedness indices 
instead of the variance or correlation matrix. By minimizing the 
interconnectedness across variables and reducing their spillovers, 
the portfolio becomes less susceptible to network shocks. As a result, 
investment instruments that neither influence nor are influenced by 
others will be assigned higher weights. This can be represented as:

OW
PWConnect I

I PWConnectCorr I
t

t

*
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 (12)
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Where PWConnect t[ ]−1  is the pairwise connectedness index 
matrix, and I is the identity matrix.

3.2.2.3. Risk-parity approach
Following the methodology of Maillard et al. (2010), we employ 
the risk-parity portfolio approach. This technique allocates 
portfolio weights so that each asset contributes equally to the 
overall portfolio risk. The rationale is that a portfolio with equal 
risk contributions is expected to perform better and be more 
resilient during market downturns and economic crises. This can 
be formalized as the following minimization problem:

min OW Var Cov OW i OW Var Cov tOWit ti j

N
jt j( ( ) )) ( ) �* *

,

* *− − −
=∑ 1

2  

 (13)

3.2.2.4. Portfolio back testing: Hedging effectiveness
To evaluate portfolio performance, we utilize the hedge 
effectiveness score. In the spirit of Ederington (1979) hedge 
effectiveness is given by:

HE Var Hedg
Var Unhedg

= −1
( )

( )
 (14)

Var (Hedg) represents the variance of the portfolio returns, and 
Var (Unhedg) the variance of the unhedged asset. HE represents 
the percent reduction in the variance of the unhedged position. 
The higher the HE the larger is the risk reduction.

4. RESULTS

4.1. Total Connectedness Index (TCI)
The interconnectedness indices among the energy and commodity 
markets illustrate significant variations, highlighting the diverse 
influence dynamics between different assets as detailed in Table 2. 
The “to” connectedness values fluctuate between 4.40% (GAS) and 
53.23% (CNRG). Conversely, the “from” connectedness values 
vary from 8.19% for GAS to 48.61% (CNRG), demonstrating 
a significant variation. Notably, GAS displays the lowest 
connectedness in both the “to” and “from” categories, indicating its 
weak influence and response dynamics within the network, while 
the clean energy index (CNRG) shows the highest connectedness 
level. The NET values provide a net measure of connectedness for 
each asset, reflecting both their influence on others and the impact 
they receive. For instance, while ICLN and CNRG are significant 
contributors to overall connectedness, indices like primarily GAS 
and WTI act as net receivers of shocks from other assets. These 
results are consistent with the findings of Attarzadeh and Balcilar 
(2022). Incremental Own Connectedness (Inc.Own) values further 
elucidate the degree to which individual assets influence the overall 
connectedness of the market. A closer examination reveals that 
ICLN and CNRG exert substantial influence, as indicated by their 
notably high values in the “Inc.Own” row. Lastly, the conditional 
total connectedness index (cTCI) compared to total connectedness 
index (TCI) offers valuable insights into the importance of 
direct connections among variables. The ratios observed imply a 
substantial degree of direct linkages that extend beyond the general 
interconnectedness of the market. These findings underscore the 

presence of distinct, influential connections among energy and 
commodity assets, emphasizing their roles within the broader 
economic landscape.

The Figure 2 illustrates the dynamic total connectedness index 
(TCI) over the sample period from October 26, 2021, to January 
5, 2024. The average TCI value corresponding to the period is 
approximately 38.30% (Table 1), implying that co-movements 
within these energy indices are moderate. On average, 38% of the 
forecast error variance in one index can be attributed to shocks 
from other indices included in the network. However, the results 
potentially mask the dynamics and influences of specific events 
shaping the linkages between the different indices, which could 
trigger substantial deviations from the average TCI value of 38%.

Thus, we extend our analysis by exploring the richer time-varying 
output from our dynamic econometric framework. Within the 
framework of our analysis, large TCI values indicate strong co-
movements across the network. In the Figure 2, total connectedness 
within our network varies considerably, ranging from a low of 
below 30% to a high over 80% during November 2021. This initial 
peak may be associated with the market adjustments following 
the ongoing global energy crisis, while the latter peak could 
correspond to economic uncertainties and policy changes related 
to climate initiatives and energy transitions. In such period, the 
energy market experienced a significant crisis due to a combination 
of factors: A rapid post-pandemic surge in global energy demand, 
supply chain disruptions, and geopolitical tensions. This implies 
that the connectedness across the various indices not only reacts 
to events associated with the green finance and energy markets 
under examination but can do so swiftly and by considerable 
amounts. A closer inspection reveals that the TCI exhibits several 
distinguishable peaks and troughs across the sample period.

Figure 2: Dynamic total connectedness . 
Notes: Results are based on a TVP-VAR (0.99, 0.99) model with lag 

length of order 1 (BIC) and a 20-step-ahead forecast

Table 2: Average dynamic connectedness
Measures ICLN CNRG WTI GAS FROM
ICLN 51.79 45.47 1.78 0.96 48.21
CNRG 44.99 51.39 2.10 1.52 48.61
WTI 3.44 4.53 90.11 1.92 9.89
GAS 1.80 3.22 3.17 91.81 8.19
TO 50.23 53.23 7.04 4.40 114.90
Inc.Own 102.02 104.61 97.15 96.22 cTCI/TCI
NET 2.02 4.61 −2.85 −3.78 38.30/28.72
NPT 2.00 3.00 1.00 0.00
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The Total Connectedness Index (TCI) shows a pronounced peak 
around mid-2022 corresponding to the war between Russia and 
Ukraine, followed by variations and another peak during the 
second and third quarters of 2022. The Consumer Price Index for 
energy rose by 33.3%, with gasoline prices increasing by 58.1% 
and fuel oil by 59.3%. Efforts by Europe to replace Russian gas 
led to increased LNG prices and electricity costs. This crisis 
highlighted the volatility and vulnerabilities within the global 
energy supply chain. Such results underscore the dynamic nature 
of connectedness within the green finance and energy sectors, 
underlining the importance of considering time-varying aspects 
to fully understand the interdependencies and risk transmission 
mechanisms2. Also, there are smaller peaks observed in the second 
quarter and mid-third quarter of 2023. These peaks reflect periods 
of heightened co-movements, suggesting turbulent times where 
the indices in our network are deemed relatively equally risky.

4.2. Net Total Directional Connectedness
The figure 3 illustrates the net connectedness dynamics for Green 
Energy (ICLN and CNRG) and traditional energy indices, namely 
Crude Oil (WTI) and Natural Gas (GAZ), from early 2022 to early 
2024. Throughout most of this period, the green energy indices, 
ICLN and CNRG, primarily act as net transmitters of shocks, 
except at the end of 2021, when they briefly serve as net receivers 
due to heightened market volatility. This pattern indicates their 
susceptibility to external disturbances. Conversely, traditional 
energy indices, WTI and GAZ, function as net receivers of 
shocks during this time. However, at the end of 2021, marked by 
geopolitical tensions, all indices frequently shift between being net 
receivers and transmitters of shocks. As time progresses, the roles 
of these indices stabilize, resulting in reduced intensity of both 
transmission and reception of shocks. This dynamic underscores the 
varying responses and stability levels between green and traditional 

2 World Economic Forum: “Factors contributing to the global energy crisis 
and trends in energy demand” (World Economic Forum). Available at: World 
Economic Forum. U.S. Bureau of Labor Statistics: “Consumer price changes 
and significant increase in energy prices from November 2020 to November 
2021” (Bureau of Labor Statistics). Available at: Bureau of Labor Statistics. 
International Energy Agency (IEA): “Global energy crisis, impact of 
geopolitical factors, and government responses” (International Energy 
Agency). Available at: International Energy Agency.

Figure 3: Net total directional connectedness

Results are based on a TVP-VAR (0.99, 0.99) model with lag length of 
order 1 (BIC) and a 20-step-ahead forecast)

Figure 4: Cumulative portfolio returns

Results are based on the time-varying variance covariance matrices 
retrieved from the TVP-VAR (0.99, 0.99) with one lag. MVP refers 
to the minimum variance portfolio, MCP refers to the minimum 
correlation portfolio, RPP refers to the risk-parity portfolio and MCoP 
to the minimum connectedness portfolio. The dotted gray lines depict 
returns on individual bond indices

energy sectors in times of uncertainty. These observations are 
consistent with the findings of Avazkhodjaev et al. (2022).

4.3. Dynamic Portfolios Analysis
In this section, we solely focus on the energy markets, namely 
the green and dirty ones. To evaluate which portfolio technique 
is most appropriate we construct the four methods, namely: 
(i) minimum variance portfolios (MVP); (ii) minimum correlation 
portfolios (MCP); (iii) risk-parity portfolios (RPP) and minimum 
connectedness portfolio (MCoP). Hedge effectiveness score is 
used to evaluate the relative performance of each portfolio.

Figure 4 plots the cumulative return of the four alternative 
portfolios: MVP, MCP, MCPp, and RPP. The plot illustrates 
that these four portfolio methods perform with a visible level 
of equivalence, sharing the same underlying dynamics. The 
portfolios experience a modest dip in cumulative returns around 
mid-2022, followed by a pattern of decline until early 2023. There 
is a notable decrease in cumulative returns, which continues with 
some fluctuations throughout 2023. Worth noting that the MVP 
cumulative return outperforms during the first half of 2023. 
By the end of 2023, the portfolios show a slight recovery in 
cumulative returns, but they remain below the levels observed at 
the beginning of the plotted period. This pattern reflects the broader 
market dynamics and potential economic factors influencing the 
performance of these portfolios during the given timeframe.

To give a more concrete understanding of the composition of the 
individual portfolios, we illustrate the dynamic portfolio weights 
in Figure 5. Under casual inspection, it is fairly immediate that the 
MVP composition differs markedly from MCP, RPP and MCoP, 
while MCP and MCoP share closely matching compositions with 
each other and RPP. Addressing first the similarity between the 
compositions for MCP and MCoP, from a mechanical perspective 
this is perhaps not a tremendous surprise, since each are derived 
from the same time-varying variance covariance matrix. Having 
said that, the transformations involved to arrive at the final 
information to be fed into the portfolio calculations diverge in a 

https://www.bls.gov/opub/ted/2021/consumer-prices-up-6-8-percent-for-year-ended-november-2021.htm
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substantial fashion. Whereas for MCP, the variance-covariance 
is “simply” converted into a correlation matrix, for MCoP a 
much more involved sequence of calculations is required. Hence 
although the initial building blocks are similar for all four methods, 
the divergence in transformations does not make it immediately 
obvious that they should result in closely correlated portfolio 
weights.

The minimum variance (MVP) portfolio focusing on the assets 
that contribute least to portfolio variance likely gives significant 
importance to clean energy assets due to their lower volatility 
compared to traditional energy assets. Slight changes in MVP 
weights suggest that while clean energy stocks are still strongly 
present, adjustments are made in response to volatility changes, 
in particular when market risk for energy commodities increases. 
The minimum correlation portfolio (MCP), designed to minimize 
the correlation between assets and the minimum connectivity 
portfolio (MCoP) focusing on minimizing connections between 
assets, show more dynamic weight changes reflecting the evolving 
interrelationships between clean and polluting energy sectors. In 
both MCP and MCoP portfolios, the weights of ICLN, gas and 
WTI are similar whereas the weight of CNRG is very low but the 
allocation more balanced compared to the PVM, with adjustments 
made in response to changes in correlations and connectivity. 
Finally, the Risk Parity Portfolio (RPP) aims to equalize the risk 
contribution of each asset, resulting in a more even allocation of 
assets, with a constant allocation maintained to balance the risks 
among all assets, Independent of market conditions. Clean energy 
assets, particularly in the MVP and RPP, could dominate because 
of their lower risk and reduced volatility, while fossil fuel assets, 
although more isky, offer valuable diversification, their weighting 
is more dynamic and responsive to changing market conditions. 
In sum, these portfolios highlight the importance of strategic 

Figure 5: Dynamic multivariate portfolio weights

Results are based on the time-varying variance-covariance matrices retrieved from the TVP-VAR (0.99, 0.99) with one lag. MVP refers to the 
minimum variance portfolio, MCP refers to the minimum correlation portfolio, RPP refers to the risk-parity portfolio, and MCoP to minimum 
connectedness portfolio) Cumulative returns

balance between clean and polluted energy to achieve different 
investment objectives, whether it is minimizing risk, correlation 
or connectivity.

Having recognized some empirical similarity between MCP and 
MCoP, we dig deeper into the implications for portfolio and risk 
management. For this purpose, we compare and contrast the MCoP 
approach together with standard portfolio analysis techniques, MVP, 
MCP and RPP, by examining the hedging effectiveness score for each 
method. These results are presented in Table 3, allowing for a more 
objective comparison of the returns generated by each portfolio. 
Confirming the results of multivariate portfolio weights in Figure 5, 
the analysis of Table 3 indicate that green stocks contribute a non-
trivial role to an energy investment portfolio. By way of example, 
the portfolio weights for green indices range from approximately 
71% under the MVP to 30% and 26% under the RPP for respectively 
ICLN and CNRG. Interestingly, the green indices weights are around 
28% and 5% for MCP and 20% and 17% for MCoP.

The dirty energy sources as oil and gas seem to be similarly 
important for MCP and MCoP portfolio techniques as the average 
weights are all around 30%. The MVP and RPP successively 
consist of (22% and 6%) and (28% and 16%) respectively for MVP 
and RPP portfolios techniques. Regarding the hedge effectiveness 
ratios in the same table, the results for MVP approach suggests that 
if on average we invested 71% in ICLN, 22% in WTI and 6% in 
gas with no investing in CNRG, then the volatility of each asset in 
this portfolio would be statistically significantly lowered by 30%, 
44%, 63% and 89%, respectively. These volatility reductions are 
financially meaningful, moreover, they are statistically significant 
at a 0.1% significance level. The almost same insights could be 
drawn from the RPP portfolio technique. In fact, the volatility 
could respectively reduce by 22%, 37%, 59% and 88%.
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Table 4: Decomposed components — connectedness
Panel A: Contribution TO others

Components ICLN CNRG WTI GAS
1 47.46175 51.27931 5.354976 9.656870
2 47.93135 49.48450 6.475626 8.455309
3 50.21829 53.99229 19.879396 21.550000
4 65.06909 66.31266 18.929424 21.959272
5 57.56043 53.73771 17.434384 23.320597
6 53.42699 51.48898 17.410786 25.271095
7 53.62733 55.28670 52.519439 26.425715
8 48.09760 37.34022 54.187437 48.583797

Panel B: Contribution FROM others
Components ICLN CNRG WTI GAS
1 48.56918 48.93037 10.56279 5.690564
2 46.93219 48.53667 10.22539 6.652536
3 50.48766 53.29613 24.41155 17.444637
4 48.54620 55.15632 46.01919 22.548745
5 51.93450 53.32983 23.15091 23.637879
6 53.57161 54.53959 24.06308 15.423577
7 58.48365 58.34509 39.87245 31.157991
8 51.42053 51.98465 40.09059 44.713297

Panel C: Total connectedness index
Component Value
1 28.43823
2 28.08670
3 36.40999
4 43.06761
5 38.01328
6 36.89946
7 46.96480
8 47.05226

Table 3: Dynamic multivariate portfolio weights
Variables Mean Std.Dev. 0.05 0.95 HE P-value
Minimum variance portfolio (MVP)

ICLN 0.71 0.05 0.62 0.78 0.30 0.00
CNRG 0.00 0.01 0.00 0.00 0.44 0.00
WTI 0.22 0.03 0.19 0.28 0.63 0.00
GAS 0.06 0.03 0.03 0.12 0.89 0.00

Minimum correlation portfolio (MCP)
ICLN 0.28 0.04 0.20 0.34 -0.26 0.01
CNRG 0.05 0.05 0.00 0.16 -0.01 0.93
WTI 0.32 0.01 0.29 0.34 0.34 0.00
GAS 0.34 0.01 0.32 0.36 0.81 0.00

Minimum connectedness portfolio (MCoP)
ICLN 0.20 0.02 0.17 0.23 -0.15 0.09
CNRG 0.17 0.02 0.14 0.21 0.08 0.36
WTI 0.32 0.01 0.31 0.33 0.39 0.00
GAS 0.31 0.02 0.30 0.32 0.82 0.00

Risk-parity portfolio (RPP)
ICLN 0.30 0.01 0.28 0.33 0.22 0.00
CNRG 0.26 0.01 0.25 0.27 0.37 0.00
WTI 0.28 0.01 0.25 0.30 0.59 0.00
GAS 0.16 0.02 0.13 0.18 0.88 0.00

Next, we examine Table 4 which addresses and reports the reward-to-
volatility (Sharpe) ratios, showing how much profit can be expected 
from a given portfolio with risk equal to one standard deviation. We 
find that the daily mean return is highest for MCP and MCoP, followed 
by RPP and MVP. Even though, MVP has the lowest mean return it 
is also exposed to the lowest risk followed by MCoP, MCP, and RPP. 
The MCoP portfolio displays the largest reward-to-volatility value at 
0.0720 followed by MCP (0.0711), RPP (0.0655), and MVP (0.0602).

4.4. Robustness Analysis: Wavelet Approach
The wavelet approach decomposes a signal in the frequency domain 
rather than the time domain, forming the components according to 
variations and trends across different time aggregation levels. While 
we cannot precisely recognize the specific aggregation level, the initial 
components correspond more closely to short-term variations, but the 
final components represent long-term phenomena. Figure 6 shows 
the total connectedness index derived from the TVP-VAR model.

The Figure 6 presents a detailed wavelet decomposition of daily 
returns indices for the four energy-related assets studied: ICLN, 
CNRG, WTI, and GAS. Using the Maximal Overlap Discrete 
Wavelet Transform (MODWT), the series are fragmented down 
into eight levels, each on behalf of different frequency components. 
Levels 1 to 4 capture the short-term, high-frequency variations, 
where ICLN and CNRG display more pronounced volatility, 
representing greater sensitivity to immediate market conditions. 
Conversely, levels 5 to 8 highlight the long-term, low-frequency 
trends, screening smoother, more stable patterns, particularly in 
ICLN and CNRG. This analysis reveals the distinct short-term and 

Turning towards the other portfolios, for the MCP approach if on 
average we invested 28% in ICLN, 5% in CNRG, 32% in WTI 
and 34% in gas, we observe that the volatility of the assets in this 
portfolio is not reduced by the introduction of green indices while 
reduced by 34% and 81% by the introduction of both WTI and gas. 
The results are for the most part statistically significantly lower 
compared to its initial value. Almost the same result is observed for 
the MCoP portfolio, where when we invest 20% in ICLN, 17% in 
CNRG and 32% in WTI and 31% in gas, the volatility would not 
decrease by the introduction of ICLN but would decrease by the 
introduction of CNRG, WTI and gas by 8%, 33% and 30%. All 
of the volatility reductions are statistically significant at least on 
the 10% significance level, except for CNRG for MCP and MCoP.

ICLN is more prominent in portfolio construction compared to 
CNRG, as reflected by its higher weights across different portfolio 
strategies (e.g., 0.28 in the Minimum Correlation Portfolio and 
0.30 in the Risk-Parity Portfolio). These higher weights suggest 
that ICLN plays a more significant role in minimizing risk and 
achieving portfolio objectives. In contrast, CNRG has lower 
weights and less contribution to portfolio risk management, 
indicating that ICLN is likely more valuable for risk mitigation 
and hedging purposes.

Our results differ from those of previous studies by offering 
greater precision in assessing the hedging role of clean energy 
indices. While their hedging capability is modest compared to 
dirty energy ones, our findings provide a clearer understanding of 
their specific role and dynamics in the market.Overall, findings 
relating to portfolio analysis seem to confirm the presence of a 
dynamic network which allows for diversification opportunities. 
We do not have enough evidence from this singular application 
of the technique to draw any firm conclusions or claim if this 
is likely to be the case in other applications. This is something 
that future research may wish to remain cognizant of, i.e. the 
possibility that risk-parity portfolios give rise to lower volatility 
with equal returns performance, relative to minimum correlation 
portfolios.
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Figure 6: Daily return indices and decompositions

Figure 7: Dynamic total connectedness index of the clean and dirty energy indices

long-term volatility characteristics of these assets, offering valuable 
insights for investors and analysts in understanding the behavior of 
these energy-related markets across various time horizons.

As we observe from Panels A and B of Table 4, both the spillover 
effect originating from and to any given economy rise as we move 
from shorter to longer horizons, thus providing an indication that 
the choc spillovers between markets appear with a significant lag. 
Our findings corroborate the ones of Antonakaksis et al. (2021), 
who also report such lagged effects. In Panel C, we report the 
total connectedness index for each component. Again, the total 
connectedness of the system rises at longer horizons. It rises 
from 28.43% to reach 47.05%. This finding reflects that in the 
long-run most of the uncertainty variations should be attributed 
to exogenous influences, given that in the long-run the economy 
has time to adjust to any potential cause of domestic uncertainty.

The Figure 7 displays the total connectedness index (TCI) across 
eight wavelet components, highlighting the interconnectedness 

among ICLN, CNRG, WTI, and GAS over various time scales. 
These results are aligned with previous empirical findings of Farid 
et al. (2023), whose research highlighted the weak correlations 
between short-term clean and dirty energy stocks and a notable 
segmentation effect between dirty and clean energy markets. 
In the high-frequency components (1 to 4), the TCI fluctuates 
between 40% and 60%, indicating strong short-term interactions 
among the assets especially in the fourth wave. This suggests that 
in the short run, shocks or news events in one market quickly 
spill over to others, affecting both clean and dirty energy assets. 
The TCI in the mid-term components (5 and 6) shows instability 
but with values generally ranging between 30% and 40% with 
two peaks at the end of the first quarter of 2022 (50% in the fifth 
component) and at the end of 2021 (60% in the sixth component). 
This level of connectedness suggests that while there is still 
interaction among the assets, it is less pronounced than in the 
mid-term. The mid-term connectedness might reflect market 
responses to medium-term economic trends or policy changes 
affecting the energy sector.
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In the low-frequency components (7 and 8), the TCI averages 
around 50%, indicating a higher level of interconnectedness over 
the long term. Notably, there were high values between late 2021 
and early 2022, where the TCI peaked between 50% and 70%, 
likely reflecting the impact of significant market events during 
that period. However, as time progressed, the TCI stabilized at 
around 40%, representing a more consistent long-term relationship 
among the assets. This stability suggests that though the markets are 
interconnected, the long-term trends are driven by broader, slower-
moving factors, with less frequent but more significant interactions.

To sum it up, the TCI across the wavelet components reveals 
distinct patterns of connectedness at different time scales. 
Short-term fluctuations display strong and volatile interactions, 
particularly during periods of market stress. In contrast, mid- to 
long-term connectedness is more stable, with significant events 
like those in late 2021 and early 2022 momentarily increasing 
interconnectedness afore settling down.

These wavelet-based results align with and confirm our previous 
findings, providing further evidence of the dynamic nature of 
connectedness across different time scales between clean and 
dirty assets.

5. CONCLUSION

In this study, we examined risk transmission between clean 
energy assets (ICLN and CNRG) and traditional fossil fuels 
(WTI and Gas), emphasizing the role of socially responsible 
investment (SRI) in portfolio diversification. Through a time-
varying parameter vector autoregression (TVP-VAR) model, we 
assessed how significant global events—such as the COVID-19 
pandemic, the Russia-Ukraine conflict, and the Gaza war—have 
influenced the dynamic connectedness among these assets. Using 
daily data from October 26, 2021, to January 5, 2024, we explored 
various portfolio construction techniques, including the minimum 
variance, minimum correlation, risk-parity, and minimum 
connectedness portfolios, while employing wavelet analysis to 
capture spillover effects across different frequency components.

Our findings reveal that connectedness between clean and 
traditional energy sources spikes during global crises, with major 
peaks linked to the COVID-19 pandemic, the Russia-Ukraine 
war, and the Gaza conflict. However, these impacts were typically 
short-lived, suggesting limited long-term effects on connectedness. 
In portfolio analysis, the Minimum Variance Portfolio (MVP) 
achieved the highest hedging efficiency, particularly for Gas, 
which exhibited the highest individual hedging efficiency across 
all portfolios. Conversely, clean energy assets, particularly ICLN, 
provided relatively low hedging efficiency, indicating they may 
be less effective in risk management.

This study offers meaningful insights for different stakeholders. 
For investors, it highlights the potential of SRI in portfolio 
performance without compromising returns, supporting the 
case for integrating ESG criteria in investment strategies. For 
policymakers and regulators, the findings offer a perspective 
on the evolving interactions between green and traditional 

energy assets, underscoring the potential need for standardized 
green bond definitions. Finally, for bond issuers, the evidence 
suggests that attracting green capital need not require a trade-off 
in financial returns, as long as balanced investment strategies are 
employed. Overall, our research underscores the importance of 
adaptive, ESG-aligned investment strategies that can contribute 
to sustainable investing and long-term value creation.
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