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ABSTRACT

The energy landscape, particularly in the electricity sector, is characterised by a complex interplay of various factors that contribute to its inherent 
volatility. Electricity participants, including investors, regulators, consumers, and policymakers, are constantly seeking methods to better understand 
and manage the associated risks. The generalised extreme value (GEV) distribution with block minima is applied to model extreme losses on daily 
electricity demand in South Africa for the period of 1 April 2019 to February 13, 2024. The results of the estimated GEV gave a negative shape parameter 
implying that both winter and no-winter seasons extremes are correctly model a type III GEV distribution known as the Weibull distribution. When 
computing the VaR and ES, we found that VaR went as low as 8.74% while for ES had the lowest as 9.57%. Finally, the backtesting procedures further 
proved that the estimated risk measures are reliable as both the Kupiec and Chrisoffersen tests failed to reject the null hypothesis. In conclusion, the 
fitted GEV showed some reliance in capturing extremes losses for winter and non-winter returns. Lastly due to reliability of the models, risk analysts 
together with investors interested in the electricity sector should therefore adopt the procedures used to know the risk of their investment.

Keywords: Extreme Value Theory, Electricity Demand Load, Generalised Extreme Value, Volatility, South Africa 
JEL Classifications: C1, C4, C5

1. INTRODUCTION

South Africa is heavily dependent on electricity mainly generated 
by coal production with an estimated power capacity of 90% 
(Mirzania et al., 2023). This is relatively high for a renewable 
energy resource, particularly for a large populated country such 
as South Africa with an estimated population of 62 million. 
This alone ought to cause an instability in the market of energy 
demand leading to issues of excess or demand deficiency. Demand 
deficiency according to Daniels (2022) arises from electricity users 
resorting to other means of energy generation like solar energy, 
biogas and many more. The energy sector is highly volatile and 
according to Šiml (2012), volatility clustering is a key risk factor 
that affects risk measures like value-at-risk (VaR). This means 
that extreme returns occur in clusters, highlighting the importance 
of managing volatility in risk management models. In addition, 
Chikobvu and Ndlovu (2024) showed that modelling volatility 

gained popularity after Bellerslve (1986) has introduced GARCH 
(herein referenced Generalized Autoregressive Conditional 
heteroscedasticity) models; but Ardia et al. (2019) showed that the 
GARCH model is now a common risk management tool.

Nonetheless, Bauwens et al. (2014) underlined that the GARCH-
family models provide biased estimates since their parameters are 
time-invariant, resulting in economic disasters caused by changes 
in economic conditions and investor expectations. Massacci (2017) 
further discovered that returns are fat-tailed, therefore risk strategies 
calculated during calm periods are ineffective during turbulent 
times. Obviously, this shifts the focus away from the middle of 
a conditional distribution but to the concept of tail risk. This can 
be difficult to measure in practice, because the distribution of 
returns during times of distress may not be adequately represented 
under standard parametric assumptions. Therefore, assumption 
of normality in GARCH models to predict volatility dynamics 
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is frequently challenged by empirical results; see for instance, 
Chikobvu and Ndlovu (2023a). This indicates that extreme losses 
are more likely to occur than those following a normal distribution. 
It is generally understood that the returns of emerging markets 
deviate significantly from normality, and this deviation is heavily 
impacted by the behaviour of large losses. Hence, Sigauke et al. 
(2014), advised that VaR and expected shortfall (ES) calculated 
using sample quantiles from a normal distribution when the data 
is fat-tailed are unreliable, henceforth a theory that considers these 
extremes is the so-called extreme value theory (EVT).

Beytell (2016) added that by utilising EVT methods in conjunction 
with risk measures yields reliable market risks, whereas Wei et al. 
(2013) observed that EVT is dependent on extreme observations 
to generate a distribution of random variable. This method 
of measuring risk is more efficient than simulating the whole 
distribution of a random variable. As a result, the current study 
uses EVT model to forecast the risk associated with extreme 
values in electricity demand resulting in economic shocks and 
financial instability in South Africa. Following a Beytell (2016), 
and Wei et al. (2013), we firstly estimate the GEV distribution to 
winter and non-winter electricity demand. In this way, our study 
hopes to assess the extreme trends for both winter and non-winter 
electricity and show a road mapping to extreme demand in both 
seasons. We further want to assess the risk associated with both 
season and show which season is likely to be affected by the 
losses through the application of VaR and ES.

2. METHODOLOGY AND ESTIMATION

This section mainly comprises of the methods used to model the 
VaR and expected shortfall of the electricity demand returns using 
the extreme value theory approach. The series under study are hourly 
electricity demand for the period of April 1, 2019 to February 13, 2024 
and exhibit daily and weekly seasonalities. Hence, our model includes 
only daily seasonality. However, Smyl (2023) has emphasised that 
the daily seasonality (24 h values) is part of the weekly seasonality 
(168 h values), therefore the use of daily seasonalities in this study.

2.1. Generalized Extreme Value Distribution via Block 
minima
The generalized extreme value distribution is a family of 
continuous probability distributions developed within the 
extreme value theorem (Chikobvu and Chifurira, 2015). It 
consists of three different forms, the Gumbel (type I), the 
Fréchet (type II) and the Weibull distribution (type III), which 
are determined by the shape parameter. To illustrate the GEV 
via block minimum (BMM), we now, let X1…Xn represent 
independent and identically distributed sample. The minimum 
values (gains) are now computed by

mn = min [X1,…, Xn] = −Mn = −[max[X1,…, Xn] (1)

2.2. Block Maxima/Minima Method
One parametric method for EVT is the block maxima/minima 
method. It entails fitting the GEV to a specific set of maxima 
selected from a given data sample. As a result, we determined the 
ideal block size using the eight procedures listed below.

Step 1:  In this study, the daily electricity demand load is the data 
that is selected to function. We only allotted 25% of the 
generated data set to the test set of the study, in contrast 
to the 10% employed by Özari et al. (2019).

Step 2:  Blocks of data are divided into a minimum and maximum 
number.  is the number of the block. Several blocks are 
generated from the daily electricity demand, starting with 
block five and going up to block fifty-nine. Over ninety 
trading days, this is intended to allow the risk measures 
to produce four exceptions or less.

Step 3:  For each  block size, a minimum/maximum set of values 
is generated by computing the minimum/maximum value 
of each block. In this step, a data set is created for  and 
the minimum/maximum values of each block are taken 
separately for these data sets.

Step 4:  For the general extremum value distribution,  data is set 
appropriately. Using tests like Shapiro-Wilk, Anderson 
Darling, and Kolmogorov Smirnov tests, we are able to 
determine whether the fitted distribution of the blocks is 
appropriate.

Step 5:  The parameters of the optimal distribution for each  value 
are determined.

Step 6:  The characteristics determined in step 5 as the over-value 
distribution or the number of observations segregated for 
testing with optimal distribution are used to create new 
variables, known as predictors, for each value.

Step 7:  The similarity between the test data and the k sets of 
estimated data is examined for each . If at all feasible, it is 
ideal for these two sets of data to be equal. The degree of 
resemblance between these two data sets can be determined 
in a variety of ways. In this study, we opted to employ the 
Pearson correlation to check for similarity; unlike Özari 
et al. (2019) who used the absolute difference technique 
to check for similarity.

Step 8:  The best block size is defined as the block with the highest 
correlation/similarity.

2.3. The Generalized Extreme Value Distribution
The GEV distribution can be denoted as GEV (µ, σ, ξ) and 
according to Gagaza et al. (2019), this distribution is given by

G x x
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Where µ, σ, ξ are the location, scale and shape parameters 
respectively.

Firstly the approach to choose between block maxima and block minima 
lied on the interest of the study, but before the choice of approach one 
should ensure that the observations are independent and identically 
distributed and divide the sample into non-overlapping subsamples 
(Chinhamu et al., 2015). Lastly the choice of the approach to fit the 
GEVD to lies on the nature of the data at hand and the interest of the 
study. Block maxima approah will be employed since the study’s focus 
is on periods of peak energy demand (Ferreira and De Haan, 2015).

2.4. Maximum Likelihood Estimation
For parameter estimation purposes, we employ the method of 
maximum likelihood. It is favoured in statistical modelling for its 
three advantages: (1) it has desirable mathematical and optimality 
properties, (2) it could give a consistent approach to parameter 
estimation problems, (3) it is applicable in almost all popular statistical 
software packages as outlined by (Abdulali et al., 2022). Furthermore, 
it is not a difficult approach to use. Although it appears to be an 
excellent technique, its disadvantage is that it leads to underestimating 
of small sample sizes (Phoophiwfa et al., 2023), which can be deemed 
insignificant for this study because of large dataset being used. 
Abdulali et al. (2022) gave the steps to estimating the parameters of a 
probability distribution in three brief steps. The first step is obtaining 
the log likelihood function which is computed by

L f x

L f x
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and, for GEVD, the result of will be
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The second step is to take the natural log of the likelihood function 
and collecting terms involving the parameters µ, σ, ξ. The last 
step will be to differentiate L(µ, σ, ξ) and solve with respect to 
µ, σ and ξ to have
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2.5. Return Levels
The return level is a typical metric for extreme events. Chikobvu 
and Chifurira (2015) defines return levels to be the expected level 

to be equal or exceeded on average once every interval of time (T) 
with a probability p. The following is the return level for a GEVD 
as per Saumi et al. (2016);
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But for ξ = 0, the model (7) becomes
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where T is the time interval in years.

2.6. Risk Measures
When dealing with energy generated mostly from renewable 
resources, it is worthwhile to know the amount of risk that might 
be attributed to energy usage that is above or below the normal 
threshold. To avoid any inconveniences from these occurrences, 
risk measures must be utilized to know the amount of units that 
might be needed in future. This section discusses the risk measures 
utilized in this study; VaR and ES.

2.7. Value-at-Risk
VaR is one commonly used measure of market risk, however it is 
not only limited to exploring the market risk, it can also manage all 
types of risk (Li, 2016). This makes it fit enough to explore even 
the risks relating to electricity demand. According to Li (2016), it is 
used to predict theoretically greatest loss portfolio for a particular 
time period for a specific situation. According to Chikobvu and 
Ndlovu (2023a) the VaR for calculating small probability p for the 
GEV distribution with maximum likelihood estimates is given as

( ){ }ˆ ˆ1 ln 1 0ˆpVaR n p for
ξσµ ξ

ξ
 = + − − − ≠   (9)

where n is the number of extrema. The value-at-risk is usually 
computed for the confidence levels between 95 and 99%. 
Nevertheless, Chinhamu et al. (2015), showed that, for a random 
variable X, with a distribution function F over a specified period of 
time, VaR can be defined as the pth quantile of F which is given as;

1ˆ (1 )pVaR F p−= −  (10)

Where F−1 known as the quantile function is the inverse of F.

2.8. Expected Shortfall
This measure in conjunction to VaR seeks to measure the potential 
loss incurred by a firm as a whole in an extreme event (Makatjane 
et al., 2021). As opposed to VaR, it was complimented for its ability 
to evaluate the losses beyond the VaR level and also being coherent 
as a risk measure. Makatjane (2022) noted that ES is sub-additive 
in addition to the mentioned advantages. According to Nadarajah 
et al. (2014), a generic computation for ES is given by

ES
p
E XI X VAR X pVaR X

VaR X pr X VAR X
p

p p

p P

=
≤ ( ){ }( ) + −

≤












1 ( )

( ) ( ( ))




 (11)



Masilo and Makatjane: Electricity Demand Forecasting of Value-at-Risk and Expected Shortfall: The South African Context

International Journal of Energy Economics and Policy | Vol 15 • Issue 1 • 2025484

Due to it being an extension to the VaR, Acharya et al. (2017) 
outlined it to be the bank losses of confidence 1−α denoted by 
Pr(R<−VaRα) = α. These authors further elaborated it to the losses 
a beyond the VaR level, which is given by

ESα = E[R|R≤−VaRα] (12)

2.9. Back Testing Risk Measures
The basic idea of back-testing risk measures is to ensure that the 
realised risk exposure is statistically in line with the expected one 
by comparing the actual losses with the reported VaR (Tsafack 
and Cataldo, 2021). It was further indicated that over violation of 
this is when the expected frequency of losses are above the above 
the reported VaR, which indicates that VaR was underestimated. 
There should not be a significant difference between the actual 
rate of violations and the expected one as this indicates inaccurate 
estimation of the VaR.

2.10. Kupiec Likelihood Ratio
Kupiec (1995) considered alternative statistical techniques that 
could be used to verify the accuracy of estimates of the tail values 
of the distribution of potential gains and losses for a portfolio of 
securities, futures, and derivative positions. These so-called reality 
tests were developed to determine the accuracy of risk exposure 
estimates generated by risk management models.

The strength of the model builds on its ability to predict precise 
risk estimates for appropriate capitalisation, hence Kupiec (1995) 
proposed the likelihood ratio statistic, LRUC to accurately estimate 
the risk violation rate. This test also takes advantage of the fact 
that a good model should have its proportion of violations of risk 
estimates close to the corresponding tail probability. The procedure 
involves computing x(α) the number of times the reported returns 
are higher than the α risk estimate, i.e. Rt > VaR(α) and Rt > ES(α) 
and comparing the respective failure rate with α. Lok (2015) on 
the other hand stated that the rate of violation observed under the 
null hypothesis denoted as 

S
n
n  is equal to the expected violation 

rate denoted as p = 1−α. Mwamba et al. (2017) further emphasised 
that the null hypothesis is derived as follows
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where, P P, p̂ , Sn and n represent the theoretical proportion of 
violations, observed proportion of violations, frequency of violations 
and total sample size respectively. The assumption here is that the 
frequency follows the following binomial  theorem 
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Reject the null hypothesis if the observed probability value is greater 
than the calculated probability value and conclude that the model 
is not correct, implying that the risk computed from the risk model 
is unreliable. This means it can give false signals to risk managers.

2.11. Christoffersen Likelihood Ratio
Christoffersen is defined as a new backtesting tool that is based 
on the length of time between VaR violations. The test relies on 
the assumption that the violations are independent and identically 
distributed Bernoulli. The main insight is that where the VaR model 
is properly indicated for coverage, p, the expected duration of 
infringements should be a constant 1/π days. In this case, the 
Kupiec test was extended by the Christoffersen and Pelletier test 
(2004) to take account of the serial independence of violations 
(i.e. extreme clustering). The conditional precision for both ES 
and VaR should be tested when it is useful to control the inherent 
volatility cluster. The test provides a complete accuracy evaluation 
of both ES and VaR, according to Lee et al. (2012) it aims to 
determine if the violation indicator is I It

L VaRt ±
t=

>{ } .

In general, the indicator variable is given by a binary variable 
denoted with 1 and 0, where the former indicates that a violation 
has occurred and the latter no violation has occurred. The fact 
that the test aims at establishing the dependence of violation, the 
notation ηij is used to present the number of days where the jth 
condition occurred given that the ith condition previously occurred. 
Consequently, Table 1 presents a contingency table that presents 
possible outcomes.

The null hypothesis is that the violation indicator does not exhibit 
a first-order Markov property, i.e P(It=|It−1=0)= P(It=|It−1=1)=1−α. 

By defining π
η

η
ij

ij

ij
j

=
∑

, where πij presents a violation probability 

that occurs conditionally on state i at time t−1 such that 
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extended Kupiec LR test statistic is given by
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In line with Papastathopoulos and Tawn (2013), expression 14 is 
an asymptotic chi-square distribution with one degree of freedom. 
Reject the null hypothesis if χ χα

2
2

2> −,n  and conclude that the 
estimated risk measure is not a good measure for a specified risk.

3. EMPIRICAL ANALYSIS AND 
DISCUSSION

In this section of the study, we present the analysis and discusstion 
of the results. These results are presented in tables and figures. 

Table 1: Christoffersen contingency table
Exceptions It−1 = 0 It−1 = 1 Total counts 
It=0 η11 η12 η11+η12

It=1 η21 η22 η21+η22

η11+η21 η12+η22 N
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Figure 1: Returns on daily electricity demand

Following Makatjane (2022), we analyse losses on the winter 
and non-winter returns separately. Unless specified otherwise, 
the generalised extreme value distribution is implemented in R 
(R Core Team, 2021), RStudio (RStudio Team, 2022), evir (Pfaff 
and McNeil, 2018), rugarch (Ghalanos, 2020), ismev (Heffernan 
and Stephenson, 2018) and eva (Bader and Yan, 2020).

Figure 1 shows plots of the daily electricity demand. While 1c and 
1d demonstrate that the data is non-normal, the kernel density plot in 
Figure 1d indicates that the distribution of the returns on electricity 
demand is leptokurtic demonstrating a kurtosis that is high above 
three. According to Pratiwi et al. (2019), this is an indication that 
the distribution of the returns do not have the same distribution as 
the normal, so it can be said that the returns has heavier tails than 
normal as reported in Figure 1d. Furthermore, it is noteworthy 
that in Figure 1a, seasonality is paired with certain positive and 
negative patterns. These moments of volatility clustering, according 
to Jacobo and Marengo (2020), are the result of events like the 
COVID-19 pandemic especially from the year 2020 to 2022. As 
Figure 1a shows, this electricity market in South Africa likewise 
has the most concentrated losses. Moreover, this figure represents a 
potential benefit when conditional heteroscedasticity is considered. 
Two important factors are highlighted here: the reason for weight 
loss; and the erratic nature of weight loss. The latter contends 
that irregular shocks in the actual energy sector have a greater 
influence on future volatility, whereas the former contends that 
downturn volatility follows these shocks rather than significant 
losses or gains. In Figure 1b the returns series are fairly stationary, 
around the zero mean, while high and non-constant fluctuations are 
noticeable, indicating volatility clustering and heteroscedasticity. 
Isolated extreme returns are visible, suggesting the extreme value 
distribution is relevant. The same results of volatility clustering 
are reported by Ndlovu and Chikobvu (2023) in their study of 
the generalised Pareto distribution model approach to comparing 
extreme risk in the exchange rate risk of bitcoin/us dollar and South 
African rand/us dollar returns.

Furthermore, Table 2 summarises the daily electricity demand 
returns. It is evident that the returns distribution are not normally 
distributed. As reported in Table 2, the kurtosis is above three 
implying that returns of electricity demand are leptokurtic 
indicating a fat tailed distribution. This results are in line with the 
one found by (De Domenico et al., 2023). The skewness is below 
zero implying negatively skewed distribution and this confirms the 
results reported in Figure 1(d) that returns are negatively skewed. 
This is an indication of asymmetric behaviour of the returns. Pal 
(2024) indicated that this entails the tail distribution is heavier 
than normal indicating returns distribution is leptokurtic. The 
Jarque-Bera, Shapiro-Wilk and Anderson-darling tests also attest 
to this non-normality of returns as all the three tests rejects the null 
hypothesis of normality with the calculated probability values that 
a <5% level of significance. The Ljung-Box test in Table 1, rejected 
the null hypothesis of no autocorrelation indicating the presence 
of autocorrelation. To address this issue, a block maxima approach 
is utilised to mitigate the autocorrelation problem because the 
BMM approach reduces this autocorrelation. Because the time 
series is divided into blocks (e.g., monthly, quarterly) and only 
the maximum/minimum value from each block. This approach 
was also employed by  Chikobvu and Ndlovu (2023a) in their 
generalised extreme value distribution approach to comparing the 
riskiness of BitCoin/US Dollar and South African Rand/US Dollar 
Returns study. Additionally, the Augmented Dickey-Fuller (ADF) 
test confirms that the null hypothesis of a unit root is rejected at 
the 5% significance level, demonstrating that the return series for 
the electricity demand is stationary, as shown in Table 2.

Table 2: Descriptive statistics for the returns series
Variable Mean Median Std. Dev Skew Kurt
Returns 0.00031 0.00089 0.0096 −3.9667 72.1220
Test J-B test S-W test A-D test ARCH test Ljung-box
Statistic 1.3836 0.0009 0.0005 184.591 18.93019
P-value 0.001 0.001 0.001 0.001 0.001
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Table 3: Maximum likelihood estimates for GEV

Season Block size Maxima µ̂ σ̂ ξ̂

Winter 5 315 9.592 (0.01) 0.2828 (0.001) −1.0885 (0.001)
Non-winter 5 899 9.571 (0.02) 0.2878 (0.02) −0.7577 (0.062)
NB: The values in () are the standard error of the parameter estimates

Eskom can ensure a stable supply during peak times or unexpected 
demand fluctuations. As with maxima, understanding minima is 
crucial for compliance with regulations regarding emissions and 
sustainability. By managing low-demand periods effectively, 
Eskom can reduce waste and improve its overall environmental 
impact.

3.2. Goodness of Fit Test
After model estimation, a goodness of fit (GoF) test is assessed. 
The Anderson-Darling, Jarque-Bera and Shapiro-Wilk tests are 
used the results of these tests are shown in Table 4. Nonetheless, 
Stephens (1977) recommended these for the GoF for extreme 
value distributions. Chikobvu and Chifurira (2015) and Maposa 
et al. (2016) also used these tests for testing GoF for both GEV 
and GPD models in their studies. The results of these three tests 
fails to reject the null hypothesis of normality; hence the study 
concludes that returns on daily electricity demand are well fitted 
by the GEV distribution. This is met by observing high probability 
values that are above 10% level of significance.

The residual quantities are exponentially distributed. Most of them 
lie on straight lines, which shows that the GEV is well-suited to 
this return index. These results are reported in Figure 2. The results 
reported in Chinhamu et al. (2015) are similar to the one found in 
this study. The more block sizes, the more the GEV distribution 
fits the data well. Therefore, the Fisher theorem only applies if the 
block size n→∞ (Fisher and Tippett 1928). Although the estimate 
is near zero, the estimated curve is nearly quadratic. The curve also 
provides an adequate representation of the empirical estimates, 
particularly after taking into account sampling variability. Finally, 
the density estimate corresponding to the histogram for the data 
appears to be consistent. Thereby, the fitted GEV is supported by 
the four diagnostic plots.

3.3. Return Levels Estimates
Table 5 indicates the return periods for 2, 3, 5, and 10 years 
for both winter and non-winter seasons. For non-winter, 
the expected tail-related loss of 9.662937%, 9.758999% 
9.828758% and 9.881625 at short (2 years), medium (3 and 
5 years), and long (10 years) terms, respectively, are greater 
than the expected tail-related losses of 9.677839%, 9.754928%, 
9.801420%, 9.829760 for winter season. Hence a long position 
(holding a unit of non-winter electricity hoping to demand 
electricity on a later date at a higher price) is recommended 
rather than a short position (selling a unit of winter season and 
buying it back at a later date) since there is a higher chance 
of realising a loss in the long run when holding a non-winter 
electricity demand.

With higher expected minima during winter, Eskom may need 
to adjust its infrastructure and capacity management strategies 

3.1. Estimation of GEV Model
Unlike Makatjane (2022) who used the generalised Pareto 
distribution, we fit the GEV distribution to winter and non-winter 
season’s returns separately. Ndlovu and Chikobvu (2023) extracted 
monthly period minima/maxima in their study. But, with the 
current study, we use 5 day block minima and this resulted in a 
total of 315 block minimas for winter season and a total of 899 
block minimas for non-winter season. The reason behind much 
variation in block maxima size is because winter seasons was taken 
to be the months June, July and August and the rest of the months 
were taken to be non-winter. The monthly categories was done 
looking at the weather similarities for months taken to be winter 
season and those taken to be non-winter. Table 3 summarises 
the estimated parameters of the GEV model together with their 
standard error estimates.

The shape parameters reported in Table 3 for both the winter and 
non-winter seasons are negative. This is an indication that the 
returns distributions takes that of a Weibull distribution. (Liu and 
Hong, 2022), Gagaza et al. (2019) and Sigauke et al. (2014) also 
reported a negative shape parameter estimates. The contrast is 
in an empirical analysis of Chan (2016). This author reported a 
positive shape parameter in their study, which indicates a Fréchet 
distribution.

Nevertheless, (Pratiwi et al., 2019) further indicated that the 
location parameter on the other side indicates the data centre point. 
The location parameter of non-winter returns being greater than 
that of the winter returns indicate that there is a high probability 
for the occurrence risk of extreme events as per Pratiwi et al. 
(2019) implying higher risk of excess demand or low demand of 
electricity. Finally the left endpoint for both seasons are computed 

as 
ˆˆ 9.852ˆ
σµ
ξ

− =  for winter seasons and 
ˆˆ 9.95083ˆ
σµ
ξ

− =  and 

it implies that for any degree losses above 5%, the likelihood of 
any further degrease in winter and non-winter electricity demand 
is minimal.

The analysis of minima provides insights into periods of low 
electricity demand, which can be critical for operational planning. 
The higher number of minima in non-winter (899) compared to 
winter (315) suggests that there may be more frequent low-demand 
periods during non-winter months. The location estimates indicate 
that average low demand is slightly lower in winter than in non-
winter, suggesting that Eskom may experience more consistent 
low demand in summer. This could allow Eskom to optimize 
generation schedules and reduce operational costs during these 
low-demand periods (Khamrot et al., 2024). Given the potential 
for increased low-demand periods, Eskom might explore energy 
storage solutions to balance supply and demand effectively. By 
storing excess energy generated during low-demand periods, 
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renewable generation aligns with expected demand patterns 
(Fase et al., 2024).

3.4. Estimation of Risk Measures
Two risk measures, VaR, ES used in this study compute the risk 
for electricity demand load are presented in Table 6. Estimation of 
this measures utilised EVT as a form of estimation. Value-at-Risk 
is a high quantile of the loss distribution (Chikobvu and Ndlovu, 
2023a). The VaR was evaluated at 95 and 99% respectively. At 
95% interval, VaR is 8.99% which indicates that 95% of times 
the extreme losses are expected not to exceed 8.99% which is a 
similar interpretation for all the estimated risk values. Non-winter 
returns turned to be slightly at a higher risk of having a higher risk 
of experiencing unstable electricity load demand as compared to 
winter seasons when evaluated at 95% interval. At 99% confidence 
interval, winter returns turned to be at a higher risk than the non-
winter returns. Another risk measure expected shortfall showed the 
expected risks that lie around 9.6%, on average expected shortfall 
showed risks slightly higher than the value at risk. It must be 
considered that value at risk tends to underestimate the risks but 
since the risks do not deviate much, it may be concluded that the 
highest risk at both 99 and 95% is 9.6% for both winter and non-
winter seasons. In summary these results implies that for both 95% 
and 99% intervals, non-winter is more risky than winter season. 
Which is the surprising because in winter electricity is demand is 
high indicating that high losses are expect in this season.

The computed risk measures provide Eskom with valuable 
insights into potential daily losses in electricity consumption. 
Understanding these risks helps in developing strategies to 
mitigate financial impacts during periods of low demand. The 
differences in VaR and ES between winter and non-winter 
indicate varying risk profiles. For instance, winter has a higher 
VaR (9.34 at CI 0.99) compared to non-winter (8.74 at CI 0.99), 
suggesting more significant potential losses during winter months. 
By anticipating potential losses, Eskom can allocate resources 
more effectively and develop contingency plans to manage 
financial risks. According to Panda et al. (2023), the insights 
from VaR and ES can guide operational strategies, particularly in 
demand-side management. Eskom may consider implementing 
demand response programs to mitigate risks associated with 
unexpected low-demand periods. Understanding financial risks 
associated with electricity consumption can also aid in compliance 
with regulatory requirements regarding financial stability and 
operational reliability.

3.5. Backtesting of Procedures
The summary of backtesting results of ES and VaR shown in 
Table 7 were tested at 95 and 99% for both winter and non-winter 

Table 4: Goodness of fit test for GEV distribution
Tests Winter Non-Winter
A-D

Statistic 0.415 0.551
P-value 0.335 0.156

S-W
Statistic 0.062 0.074
P-value 0.362 0.247

J-B
Statistic 3.02 4.28
P-value 0.237 0.125

Table 5: Return levels estimates
Period 2-year 3-year 5-year 10-year
Winter 9.677839 9.754928 9.801420 9.829760
Non-winter 9.662937 9.758999 9.828758 9.881625

Table 6: Computation risk measures on daily losses in 
electricity consumption
Season CI VaR ES
Winter 0.95 8.99 9.57

0.99 9.34 9.28
Non-winter 0.95 9.08 9.58

0.99 8.74 9.59

Figure 2: Diagnostics GEV model

Table 7: Backtesting of VaR and ES
P-values for Kupiec test P-values for Christoffersen test

Risk measure Level 0.95 0.99 Risk measure Level 0.95 0.99
VaR Non-Winter 0.517 0.378 VaR Non-Winter 0.207 0.885
ES Non-Winter 0.919 0.877 ES Non-Winter 0.865 0.987
Risk Measure Level 0.95 0.99 Risk Measure Level 0.95 0.99
VaR Winter 0.529 0.902 VaR Winter 0.801 0.739
ES Winter 0.668 0.872 ES Winter 0.701 0.885

to ensure reliability during these periods. This could involve 
maintaining flexibility in generation capacity or enhancing demand 
response programs to manage low demand efficiently. Eskom can 
use these insights to develop mitigation strategies against potential 
financial losses associated with lower-than-expected demand 
during extreme events. Knowing when low-demand periods 
are likely to occur can help Eskom better integrate renewable 
energy sources into its grid management strategies. This could 
enhance overall efficiency and sustainability by ensuring that 
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seasons. The null hypothesis is that the model accurately evaluates 
winter and non-winter returns risk. The values in the table all 
deemed dependable for both Kupiec and Christofferson tests 
since they are all >10%. This implies that we fail to reject the null 
hypothesis and conclude that the model accurately predicts the 
related losses for both tests. For non-winter season, ES proved to be 
more consistent when evaluated at both 95% and 99% for both tests 
due to larger p-values than the VaR. Similarly, for winter returns, 
when evaluated at 95% using Kupiec test, ES turned to be slightly 
more adequate than VaR with ES being 0.668 and VaR 0.529. 
Conversely, when both were evaluated at 99% confidence interval, 
VaR turned to be more adequate than ES. The Christofferson test 
when employed at 95% confidence interval indicated VaR to be 
more appropriate in estimating the return losses of winter seasons. 
At 99% confidence, ES accurately predicted losses than VaR. 
Generally ES could be a better risk metric to VaR looking at the 
results from the table which is similar to Götz and Laitenberger 
(2024)’s findings when using multiple tests.

4. CONCLUSION AND 
RECOMMENDATIONS

The extreme value theory was employed in this work to estimate 
the risk of electrical load demand returns using VaR and ES. This 
came about as a result of discovering the measures’ potential 
for risk assessment and their track record of good performance 
across a variety of disciplines, which suggested that because the 
data contained extremes, it may even be beneficial for returns on 
electricity demand loss. In order to ease risk assessment using EVT, 
a 5-day block maximum of 315 for winter returns and 899 for non-
winter returns was fitted using the extreme value distribution to 
capture extreme quantiles. Utilising EVT was primarily motivated 
by its shown capacity to capture extremes in a variety of research 
domains, one of which was a study by Riaman et al. (2023) on VaR 
estimation in stock investment of insurance companies and Orsini 
et al. (2020) on Large scale road safety evaluation. Additionally, 
failing to record extremes might have yielded erroneous estimation 
findings since they would have been disregarded. The method 
was further suggested by normaliy checks together with proved 
adequacy by the GoF tests.

The results from the fitted GEV model were then used to estimate 
VaR and ES. Winter returns estimates of risk at 95 and 99% 
confidence were discordant, VAR showed a risk of 8.99446 % while 
ES shortfall showed a risk of 9.567814% which both indicated the 
greatest percentage amount of change in the levels of demand. In 
simple terms if Eskom is to make any investment in electricity, it 
should be ready for that amounting change in electricity demand. 
At 99% confidence ES showed less risk than the VaR of 9.579067 
compared to 9.842173. For non-winter seasons, ES proved to be 
the right wing in risk estimation. Evaluated at both 95 and 99% 
confidence, ES had less estimates than VaR. In general, it may be 
concluded that winter seasons are more conservative than non-
winter since the 95% confidence has a smaller margin of error. To 
ensure the adequacy of the procedure, the results were backtested 
using the Kupiec and Christoffersen likelihood ratio tests. All the 
tests failed to reject the null hypothesis that the model accurately 
evaluates the winter and non-winter returns risk.

The proved accuracy of the procedure should motivate the 
electricity sector to consider applying a similar procedure to 
make informed decisions when it comes to related investments. 
The findings are not only beneficial to power entities, individuals 
and industries undertaking major investments may refer to 
the findings to avoid inconveniences by power cuts that are 
influenced by changing levels of demand. In conclusion the 
findings of this study together with the procedure may be 
adopted by any relevant entities for profitable and informed 
investments.
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