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ABSTRACT

Due to its excellent potential, wind power has gained importance as a renewable energy source in Colombia, especially in the offshore Caribbean 
region. However, one of the main challenges in the development of offshore wind projects is the analysis of the wind resource. This study presents the 
generation of a specific typical meteorological year (TMY) for wind energy in the Colombian Caribbean region, known in the literature as Reference 
Wind Year (RWY). The methodology used was based on the Sandia method, widely accepted in the analysis of wind resources. A comparison between 
the cumulative distribution function (CDF) and the statistic approach Finkelstein-Schafer (FS) was applied to evaluate multiple meteorological 
parameters in the study area associated with wind resource potential assessment, such as wind speed and direction, temperature and atmospheric 
pressure, compiled for 10 years (2012-2021). The representative years were weighted according to their importance and combined into a dataset. The 
results indicated that the proposed method was able to generate highly representative and accurate data for the case study in La Guajira, Colombia, 
guaranteeing its suitability for implementation in other locations with different climatic conditions.

Keywords: Offshore Wind, Typical Meteorological Year, Reference Wind Year, Finkelstein-Schafer Statistics, Sandia Method 
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1. INTRODUCTION

Wind energy has emerged as a promising renewable energy 
source worldwide in the past few decades, and this trend is 
expected to continue in the coming years (Xiang et al., 2024). 
Colombia, a country characterized by its geographical and 
climatic diversity, has awakened a growing interest in the use of 
wind as an energy resource due to its economic, environmental 
and social potential (Soto Gutiérrez, 2016), thus contributing 
to the diversification of the energy matrix (Arce and Bayne, 
2020). The country has winds cataloged as the best in South 
America, especially in the offshore Caribbean region, due to an 
advantageous geographic location with the presence of northeast 
trade winds (Costoya et al., 2019), which are categorized as 
class 7, with wind speeds above 9 m/s (Vergara et al., 2010). 
These wind characteristics create favorable conditions for the 

development of the offshore wind energy, as reported by (Rueda-
Bayona et al., 2019).

As the world moves towards a more sustainable future, wind 
energy has become a fundamental component of the energy 
landscape, particularly leveraging the offshore wind resources of 
the Colombian Caribbean (Arce and Bayne, 2020). Consequently, 
the potential of offshore wind energy has been subject to analysis 
on multiple occasions (Bautista Sánchez and Rojas Castellanos, 
2019; Bethel, 2021; Carvajal-Romo et al., 2019), underscoring 
the necessity for further comprehensive analysis to advance 
wind energy development in the country (Soto Gutiérrez, 2016). 
Specifically, the northern offshore region of the country has 
emerged as the focal point of the energy transition, with an offshore 
wind potential estimated at 50GW (The Renewables Consulting 
Group and ERM, 2022), and projected installed capacities of 
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1GW by 2030, 3 GW by 2040 and 9 GW by 2050, as outlined in 
(Minenergia, 2022).

One of the biggest challenges when developing an offshore wind 
energy project is the analysis of the wind resource, which is 
essential due to its direct impact on the efficiency and profitability 
of the project (Bethel, 2021). This analysis can be conducted 
in a variety of ways but requires a dataset that reflects the 
behavior of meteorological variables to assess and project wind 
behavior at specific locations. This dataset is known as a Typical 
Meteorological Year (TMY) and has sometimes been applied to 
the study of wind resources, as proposed by Eikrem et al. (2023). 
In this study, the minimization of energy costs and the increase 
of annual energy production in the planning of an offshore wind 
farm in Portugal were predicted by constructing a TMY based on 
data from 10 years.

The generation of a Typical Meteorological Year (TMY) is a tool 
widely used in studies related to solar energy and building energy 
analysis. It consists of a set of hourly values of meteorological 
parameters specific to a given geographical location, derived 
from a long-term observational database and synthesized into 
a representative meteorological sequence for a significant year. 
This technique has been extensively documented in the scientific 
literature across various locations, including Tripoli (Alargt et al., 
2021), Hong Kong (Chan et al., 2006), Togo (Patchali et al., 2022) 
(Amega et al., 2022), Argentina (Bre and Fachinotti, 2016), Cyprus 
(Kalogirou, 2003), Greece (Kambezidis et al., 2020), Turkey 
(Pusat et al., 2015), China (Li et al., 2020), Syria (Skeiker, 2004), 
Iran (Ebrahimpour and Maerefat, 2010), Ecuador (Rodríguez et al., 
2019), Australia (Maklad, 2014), Portugal (Abreu et al., 2018) and 
Nigeria (Ohunakin et al., 2013).

The most widely accepted method in this area is the Sandia 
method, which was conceived for the National Renewable Energy 
Laboratory (NREL) (Gai et al., 2024). This method is based on 
the Finkelstein-Schafer (FS) statistical approach. Different authors 
have highlighted its relevance while comparing the generation 
of TMY with different methods, concluding that it is the most 
accurate in terms of meteorological representation (Amega et al., 
2022; Kambezidis et al., 2020).

In the context of wind energy, TMYs serve as a reference 
for generating wind rose diagrams and conducting wind 
profile analysis, as demonstrated in case studies conducted in 
Ethiopia (Mansani et al., 2021), India (Hampannavar et al., 
2021; Himabindu et al., 2021), Palestine (De Meij et al., 2016) 
and Tunisia (Attig-Bahar et al., 2021). However, literature 
suggests that TMYs used in wind energy applications should 
be specifically generated for this purpose (Alonso-Suárez et al., 
2019). This is because many TMYs developed in specialized 
secondary databases tend to prioritize solar-related parameters, 
neglecting variables crucial for wind energy analysis such 
as wind speed (WS), wind direction (WD), temperature (T), 
atmospheric pressure (AP) and relative humidity (RH). As a 
consequence, these TMYs may not accurately reflect wind 
behavior, making it challenging to perform precise wind 
potential projections.

In this regard, the generation of specific TMYs, focusing 
exclusively on wind power analysis, has been studied on a 
limited scale. Initially, in the context of onshore wind power, 
Kotroni et al. (2014) assessed the most representative years in 
terms of wind to establish a typical year in Greece. Furthermore, 
Pusat and Karagöz (2021) proposed a novel model based on 
TMYs for long-term wind resource prediction at a particular 
location, incorporating key criteria such as wind speed, wind 
direction, temperature and atmospheric pressure, termed as 
Reference Wind Year (RWY). They employed the FS method and 
presented a case study in Turkey to validate their model, which 
forms part of the methodology referenced in this research. This 
approach was further supported by the investigation conducted 
by Karamanski and Erfort (2023), who utilized the RWY to 
examine both onshore and offshore wind potential along the 
coast of South Africa. Additionally, they calculated capacity 
factors and identified areas with the greatest potential for wind 
power generation projects.

In this scenario, the generation of datasets like the RWY becomes 
crucial for conducting a thorough evaluation and forecasting of 
wind resources in designated areas earmarked for these projects. 
In the Colombian context, a single application of TMY has been 
documented for the analysis of a photovoltaic plant in La Guajira, 
Colombia (Gemignani et al., 2017). Nevertheless, it is important 
to highlight that Colombia currently lacks an RWY specifically 
tailored for assessing offshore wind potential, which stands as one 
of the fundamental aims of this ongoing research. The step-by-step 
process of the selected methodology for implementing RWY is 
shown in Figure 1.

2. MATERIALS AND METHODS

For this study, 5 zones with offshore wind potential in the 
Colombian Caribbean region were chosen based on a prioritization 
of economic, environmental, technical and socio-political 
criteria. The results of this prioritization phase were published 
by the authors in Ospino-Castro et al. (2023). These zones have 
been identified as having significant wind resource potential, as 
confirmed by Rueda-Bayona et al. (2019). Figure 2 and Table 1 
provide the coordinates and locations of these selected zones. This 
paper focuses on presenting the case study of Zone 1, situated in 
the municipality of Uribia, in the department of La Guajira.

The NASA ERA-5 database was utilized to analyze the 
meteorological variables WS, WD, T and AP at a height of 10 
meters over a period of 10 years, spanning from 2012 to 2021. This 
period includes 3 leap years (2012, 2016, 2020). The methodology 
employed for generating the RWY, based on the study proposed 
by Pusat and Karagöz (2021), draws upon the traditional TMY 
generation method developed by Hall et al. (1978). This method 
involves selecting representative meteorological data from various 
years within the evaluated timeframe, resulting in 12 typical 
meteorological months (TMM).

This selection process involves comparing the cumulative 
distribution function (CDF) of each month for each year to 
determine their absolute closeness to the long-term behavior 
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observed over the 10-year study period. Through this analysis, 5 
candidate years are selected by evaluating the relative function 
of the intervals determined for each meteorological parameter. 
The CDF in this context corresponds to the relative frequency, as 
defined by Eq. (1).
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Where N(a,b) is the function that counts the intervals, n represents 
the amount of data in the set, xi is the value of the wind speed at the 

Figure 1: Graphical methodology for the application of RWY

Figure 2: Location of selected offshore zones in the Colombian Caribbean region
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evaluated instant, and I(xi∈[a,b]) corresponds to the mathematical 
function given in Eq. (2).
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In this manner, the function increments by 1 for each data 
point falling within the interval of the evaluated meteorological 
parameter. Consequently, it indicates the number of intervals that 
satisfy the condition stipulated in Eq. (3).
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The Finkelstein-Schafer (FS) statistical method serves as the tool 
for analyzing absolute closeness, and it is computed using Eq. (4).

FS
n ii

n
� �
�
�

�
�
� ��1

1
� �  (4)

Where δi corresponds to the absolute difference between the 
cumulative distribution function (CDF) of the 10 years evaluated 
and the CDF for each year, in the month evaluated, for each 
day represented by i, and n corresponds to the number of daily 
records for the month evaluated. For the appropriate selection 
of each typical month concerning the calculated FS, weighting 
factors (WF) are determined. Each index is assigned a statistical 
weight corresponding to its level of importance, as presented 
in Table 2.

The weighted sum is calculated with Eq. (5), where m is the 
number of meteorological parameters.
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To conduct the analysis and verify the accuracy of the long-
term wind speed behavior in the RWY compared to the 10 years 
analyzed, the measurement-correlation-prediction method (MCP) 
was employed (Ali et al., 2018). This method encompasses 
techniques for characterizing long-term wind data at a particular 
site (Liléo et al., 2013), focusing specifically on the examination 

of the Weibull scale to assess the wind resource in the study area. 
The Weibull probability density function (PDF) is given by Eq. (6).

f v k
c

v
c

e v k c
k v

c

k

� � � �
�
�

�
�
�
�
�
�

�
�
� � �
� ��

�
�

�
�
�

1

0 0( ; , )  (6)

Where v is the wind speed measured in m/s, k is the shape 
parameter, and c is the scale parameter measured in m/s. The 
cumulative distribution function is defined by Eq. (7).
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For the calculation of parameters k and c, the Maximum Likelihood 
Method (MLM) was selected from among various options. This 
choice was informed by the analysis conducted by Vega-Zuñiga 
et al. (2022), wherein the authors evaluated 11 methods recognized 
in the literature and concluded that MLM is one of the best for 
representing wind data distribution. The equations for k and c are 
given by Eqs. (8) and (9), respectively.
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For the wind direction index, wind rose diagrams corresponding to 
the RWY and 10-year behavior were plotted to verify and compare 
their accuracy in assisting the estimation of energy that can be 
extracted from the wind site (Hampannavar et al., 2021). To evaluate 
the prediction accuracy of the meteorological indices (WS, WD, T 
and AP) and to understand how they perform compared to the actual 
values, the results are corroborated by statistical error parameters, 
calculated using Eqs. (10-13). These parameters include Mean 
Percentage Error (MPE), Mean Absolute Percentage Error (MAPE), 
Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), 
which are widely used in the literature to determine the accuracy of 
predictions (Adaramola, 2012; Khair et al., 2017; Patchali et al., 2022).
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Where LTi y RWYi correspond to the i th long-term (LT) values 
and variables generated for the RWY respectively; and n is the 
total number of observations.

Table 1: Coordinates of the offshore study areas
Number Location Latitude Longitude
Zone 1 Uribia, La Guajira 12.211 −71.995
Zone 2 Ciénaga, Magdalena 11.189 −74.3501
Zone 3 Barraquilla, Atlántico 11.228 −74.8591
Zone 4 Puerto Velero, Atlántico 10.9902 −75.0573
Zone 5 Galera Zamba, Bolívar 10.818 −75.266

Table 2: RWY weighting factors in this study
WF Minimum Maximum Weight
WS 50/100 75/100 60/100
WD 5/100 20/100 20/100
T 10/100 30/100 10/100
AP 10/100 15/100 10/100
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3. RESULTS

Finkelstein-Schafer statistics of wind speed and direction, 
temperature and atmospheric pressure for Zone 1 are presented in 
Tables 3-6. These tables show monthly variations, demonstrating 
that representative years vary for each of these indices. Table 7 
presents the calculated wind speed weighted sums values for 
each month in Zone 1, while Table 8 shows the best cases that 
correspond to the minimum values for each month. This table 

presents the 12 TMYs along with their respective weighted sums 
of wind speed, from January to December. The selected years are 
the following: 2019, 2013, 2021, 2013, 2016, 2020, 2017, 2017, 
2019, 2021, 2017, 2013 and 2014. The entire generated dataset 
can be consulted in the data availability section.

Figure 3 shows the results of the 12 TMYs, taking as reference 
the wind speed, which is the most representative and important 
parameter. These data are distributed over 10 years. In a yearly 

Table 3: Finkelstein-Schafer statistics for wind speed
Years January February March April May June July August September October November December
2012 0.0117 0.0144 0.0089 0.0276 0.0077 0.0067 0.0105 0.0069 0.0117 0.0326 0.0105 0.0103
2013 0.0039 0.0026 0.0067 0.0061 0.0216 0.0058 0.0086 0.0086 0.0158 0.0151 0.0057 0.0095
2014 0.0201 0.0113 0.0052 0.0231 0.0066 0.0127 0.0245 0.0044 0.0126 0.0111 0.0096 0.0039
2015 0.0101 0.0095 0.0085 0.0149 0.0191 0.0238 0.0079 0.0082 0.0170 0.0118 0.0235 0.0416
2016 0.0087 0.0089 0.0107 0.0162 0.0046 0.0081 0.0077 0.0123 0.0147 0.0244 0.0345 0.0117
2017 0.0168 0.0212 0.0097 0.0053 0.0085 0.0097 0.0072 0.0100 0.0270 0.0094 0.0078 0.0072
2018 0.0098 0.0071 0.0048 0.0072 0.0117 0.0032 0.0062 0.0130 0.0147 0.0063 0.0159 0.0160
2019 0.0024 0.0120 0.0139 0.0075 0.0139 0.0098 0.0116 0.0057 0.0195 0.0124 0.0092 0.0075
2020 0.0214 0.0076 0.0131 0.0036 0.0229 0.0025 0.0073 0.0084 0.0151 0.0108 0.0114 0.0117
2021 0.0074 0.0065 0.0024 0.0054 0.0048 0.0185 0.0084 0.0044 0.0096 0.0181 0.0166 0.0077

Table 4: Finkelstein-Schafer statistics for wind direction
Years January February March April May June July August September October November December
2012 0.0018 0.0014 0.0022 0.0020 0.0025 0.0029 0.0010 0.0075 0.0048 0.0222 0.0078 0.0026
2013 0.0011 0.0014 0.0021 0.0010 0.0090 0.0011 0.0016 0.0022 0.0019 0.0071 0.0076 0.0011
2014 0.0024 0.0023 0.0013 0.0030 0.0031 0.0011 0.0031 0.0050 0.0066 0.0075 0.0063 0.0027
2015 0.0006 0.0040 0.0008 0.0018 0.0019 0.0016 0.0008 0.0026 0.0059 0.0029 0.0091 0.0075
2016 0.0009 0.0013 0.0015 0.0033 0.0026 0.0022 0.0011 0.0033 0.0016 0.0107 0.0127 0.0021
2017 0.0030 0.0025 0.0018 0.0027 0.0018 0.0007 0.0007 0.0021 0.0069 0.0043 0.0191 0.0022
2018 0.0022 0.0019 0.0037 0.0009 0.0043 0.0011 0.0010 0.0032 0.0024 0.0065 0.0078 0.0027
2019 0.0005 0.0017 0.0015 0.0009 0.0024 0.0007 0.0017 0.0023 0.0212 0.0068 0.0110 0.0014
2020 0.0028 0.0013 0.0017 0.0015 0.0020 0.0023 0.0006 0.0033 0.0045 0.0068 0.0055 0.0024
2021 0.0021 0.0032 0.0021 0.0015 0.0041 0.0033 0.0012 0.0030 0.0060 0.0062 0.0079 0.0020

Table 5: Finkelstein-Schafer statistics for temperature
Years January February March April May June July August September October November December
2012 0.0016 0.0049 0.0018 0.0005 0.0014 0.0003 0.0008 0.0005 0.0006 0.0017 0.0010 0.0011
2013 0.0009 0.0010 0.0011 0.0006 0.0006 0.0007 0.0006 0.0005 0.0007 0.0008 0.0014 0.0014
2014 0.0011 0.0029 0.0004 0.0011 0.0011 0.0016 0.0006 0.0011 0.0016 0.0007 0.0003 0.0010
2015 0.0007 0.0037 0.0006 0.0016 0.0031 0.0011 0.0021 0.0014 0.0004 0.0005 0.0010 0.0005
2016 0.0007 0.0027 0.0022 0.0022 0.0030 0.0023 0.0012 0.0009 0.0002 0.0006 0.0008 0.0008
2017 0.0009 0.0005 0.0014 0.0019 0.0014 0.0008 0.0013 0.0010 0.0008 0.0003 0.0002 0.0005
2018 0.0023 0.0020 0.0014 0.0005 0.0011 0.0022 0.0021 0.0026 0.0012 0.0018 0.0014 0.0035
2019 0.0014 0.0012 0.0020 0.0005 0.0008 0.0008 0.0009 0.0005 0.0014 0.0018 0.0010 0.0022
2020 0.0023 0.0042 0.0012 0.0016 0.0010 0.0017 0.0026 0.0024 0.0021 0.0016 0.0009 0.0009
2021 0.0006 0.0010 0.0006 0.0022 0.0010 0.0004 0.0006 0.0005 0.0004 0.0014 0.0006 0.0002

Table 6: Finkelstein-Schafer statistics for atmospheric pressure
Years January February March April May June July August September October November December
2012 0.0018 0.0005 0.0021 0.0012 0.0040 0.0017 0.0022 0.0004 0.0020 0.0009 0.0008 0.0075
2013 0.0010 0.0022 0.0034 0.0008 0.0013 0.0017 0.0004 0.0012 0.0016 0.0011 0.0004 0.0032
2014 0.0012 0.0031 0.0009 0.0012 0.0009 0.0015 0.0024 0.0012 0.0010 0.0012 0.0019 0.0047
2015 0.0007 0.0011 0.0024 0.0008 0.0018 0.0006 0.0013 0.0017 0.0028 0.0003 0.0011 0.0072
2016 0.0007 0.0030 0.0013 0.0029 0.0008 0.0020 0.0010 0.0008 0.0030 0.0037 0.0033 0.0032
2017 0.0023 0.0019 0.0010 0.0018 0.0004 0.0011 0.0005 0.0001 0.0007 0.0012 0.0028 0.0030
2018 0.0043 0.0060 0.0027 0.0034 0.0015 0.0021 0.0012 0.0035 0.0017 0.0026 0.0016 0.0011
2019 0.0015 0.0007 0.0004 0.0025 0.0019 0.0007 0.0003 0.0003 0.0005 0.0010 0.0010 0.0089
2020 0.0009 0.0019 0.0036 0.0034 0.0011 0.0006 0.0038 0.0017 0.0010 0.0015 0.0009 0.0046
2021 0.0020 0.0013 0.0009 0.0017 0.0026 0.0013 0.0005 0.0013 0.0019 0.0014 0.0035 0.0040
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individual analysis, it was found that the years 2021 (March and 
September), 2019 (January and August) and 2013 (April and 
November) contributed the highest number of typical years. On 
the other hand, the years 2012, 2015 and 2018 were not part of 
the generation of the RWY set, since the weighted wind speed 
values of these years was not the minimum among the 10 years 
that were analyzed.

Figure 4 shows the behavior of the cumulative distribution function 
(CDF) calculated for the meteorological parameters, covering WS, 
WD, T and AP, over the 10 years closest to the long-term projection 
corresponding to the selected months in RWY. It is observed that 
there is concordance between the short-term data and the long-
term data, reflecting a typical distribution. The comparisons are 
detailed in Figure 5. The differences between RWY and the long-
term measurements are minimal.

The average monthly profile of WS is presented in Figure 5a, where 
the behavior of the long-term average is observed, compared to 
the RWY generated, the average wind speed was the highest in 
June with 8.24 m/s and 8.21 m/s for both cases respectively, and 
the lowest in October with 5.60 m/s and 5.56 m/s. In Figure 5b, the 
comparative average behavior of the WD index is observed, where 

the average orientations are between 70° and 85° for the long-term 
data and for the RWY between 70° and 95°. In Figure 5c, it is 
reported that the average temperatures are between 25°C and 29°C 
for both cases. The AP is shown in Figure 5d, where the average 
values are observed between the range of 100 kPa and 101 kPa.

By applying the MCP method through MLM, the results 
corresponding to the shape and scale factors were obtained, to 
verify the accuracy of the RWY comparing it to the long-term 
behavior of the 10 years. In Figure 6a, the adjustment of the 
Weibull distribution corresponding to the 10 years analyzed is 
presented, as k = 4.80; c = 7.65 m/s, with an average power density 
(WPD)= 246.21 W/m2 and average WS = 7.01 m/s.

In Figure 6b, the adjusted RWY curve is observed giving as 
results k = 4.57; c = 7.65 m/s, the WPD = 246.64 W/m2, and an 
average WS = 6.98 m/s. These results show a positive similarity 
relationship with the long-term results. The wind data analysis 
indicates that the RWY does correspond to a representative data 
set of the long-term behavior of the wind speed in the studied area.

In Figure 7a, the wind rose diagram was plotted for the long-term 
behavior (10 years), showing a tendency towards the east, with 

Table 7: Wind speed weighted sums of the Finkelstein-Schafer statistics
Years January February March April May June July August September October November December
2012 0.0042 0.0053 0.0037 0.0078 0.0039 0.0029 0.0036 0.0038 0.0048 0.0144 0.0050 0.0054
2013 0.0017 0.0018 0.0033 0.0021 0.0081 0.0023 0.0028 0.0031 0.0050 0.0060 0.0038 0.0038
2014 0.0062 0.0049 0.0020 0.0071 0.0029 0.0042 0.0076 0.0029 0.0054 0.0051 0.0045 0.0031
2015 0.0030 0.0046 0.0031 0.0048 0.0065 0.0068 0.0030 0.0035 0.0065 0.0039 0.0087 0.0142
2016 0.0028 0.0040 0.0039 0.0061 0.0028 0.0037 0.0028 0.0043 0.0049 0.0099 0.0128 0.0044
2017 0.0057 0.0065 0.0035 0.0029 0.0030 0.0031 0.0024 0.0033 0.0089 0.0038 0.0075 0.0032
2018 0.0046 0.0043 0.0031 0.0030 0.0047 0.0022 0.0026 0.0056 0.0050 0.0043 0.0067 0.0058
2019 0.0015 0.0039 0.0045 0.0029 0.0048 0.0030 0.0036 0.0022 0.0107 0.0055 0.0055 0.0050
2020 0.0068 0.0037 0.0049 0.0025 0.0068 0.0018 0.0036 0.0040 0.0057 0.0052 0.0047 0.0049
2021 0.0030 0.0030 0.0015 0.0027 0.0031 0.0059 0.0027 0.0023 0.0045 0.0068 0.0072 0.0035

Table 8: Minimum value of weighted sums for wind speed, 12 selected TMMs
January February March April May June July August September October November December

Year 2019 2013 2021 2013 2016 2020 2017 2019 2021 2017 2013 2014
WS 0.0015 0.0018 0.0015 0.0021 0.0028 0.0018 0.0024 0.0022 0.0045 0.0038 0.0038 0.0031

Figure 3: Selection of the 12 TMMs for RWY generation with the wind speed index
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wind speeds between 6 and 8 m/s equaling to 19.8% and between 
8 and 10 m/s equaling to 26.4%. The wind rose diagram was 
plotted for the Reference Wind Year (RWY) in Figure 7b where 
it is observed that the wind blows from the east, with wind speeds 
above 6-8 m/s representing 20.4% and between 8 and 10 m/s with 
27.2%.

Figure 4: CDF comparison of meteorological parameters between short-term and long-term (a) WS, (b) WD, (c) T, and (d) AP

dc

ba

Figure 5: Mean monthly profiles of meteorological parameters between the short-term and the long-term (a) WS, (b) WD, (c) T, and (d) AP

b

d

a

c

Figure 6: Weibull distribution (a) long-term 10 years, (b) RWY

ba

When analyzing the results of the statistical error parameters 
presented in Table 9 for each meteorological parameter, concerning 
the WS, WD and T indices, negative values of MPE equal to 
−0.31%, −0.02% and −0.23% are observed, indicating that the 
RWY predictions tend to be slightly lower than the actual long-term 
values. Their proximity to zero suggests that the predictions are 
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Figure 7: Wind Rose Diagram (a) Long Term (10 years), (b) RWY

ba

Table 9: Results of statistical error parameters
Metrics WS (m/s) WD (°) T (°C) AP (kPa)
MAE 0.12 3.03 0.23 0.0020
MPE −0.31% −0.02% −0.23% 0.2%
MAPE 1.80% 3.77% 0.86% 0.02%
RMSE 0.16 4.15 0.33 0.03

quite close in percentage terms. In the case of AP, a positive MPE 
close to zero, 0.2%, is recorded, indicating that the RWY estimates 
are slightly above the actual values, which also suggests that the 
predictions are quite close to the actual values in percentage terms.

The MAE indicates that, on average, the predictions exhibit an 
absolute error of 0.12, 3.03, 0.23 and 0.0020 relative to the actual 
values. A low value implies that the estimates are generally in close 
proximity to the long-term values. Notably, for WS and AP, an 
exceptionally high degree of proximity is observed, suggesting a 
high level of accuracy.

The RMSE, serving as another indicator of accuracy, yields results 
of 0.16, 4.15, 0.33 and 0.03, respectively. Minimal variance is 
observed in most cases, signifying low root mean square error 
and implying that the predictions are accurate, with small and 
consistent errors. The MAPE serves as a measure of average 
absolute percentage error between predictions and actual values, 
yielding results of 1.80%, 3.77%, 0.86% and 0.02% respectively. 
Low percentages suggest accuracy in percentage terms, with T 
and AP exhibiting particularly high accuracy.

4. CONCLUSIONS

Offshore wind energy has emerged as a promising resource for 
Colombia, particularly in the offshore Caribbean region, boasting 
class 7 winds with speeds exceeding 9 m/s. This presents significant 
opportunities for diversifying the energy matrix and transitioning 
towards more sustainable energy sources in the country. The 
methodology employed in this study is based on the traditional 
TMY generation method and the statistical Finkelstein-Schafer 
method. This approach has demonstrated accuracy and suitability 
for generating offshore wind specific RWY data. Statistical 
error parameters were applied to evaluate the precision of RWY 

predictions against actual values, underscoring the efficacy of 
this approach. Overall, the findings suggest that the predictions 
are highly precise and closely align with long-term actual values, 
affirming the reliability of the results and their applicability in 
feasibility studies concerning offshore wind resource potential.
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