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ABSTRACT

With the characteristic of natural gas as a clean, non-toxic, and valuable energy source, its use has been increasing in recent years. Thus, maintaining 
stable natural gas security requires a reliable long-step price forecasting indicator with less error. We propose a hybrid theory of Ensemble Empirical 
Mode Decomposition (EEMD) with Long Short-Term Memory (LSTM) to perform multi-step forecasting focusing on 30-90 steps of the daily 
Henry Hub natural gas price as a dataset. Using four widespread error measurements, the proposed model provides excellent results compared to no-
decomposition as the benchmark model. The proposed model provides 50% lower error results than the single LSTM. EEMD_LSTM brings values 
below 10 in the MAPE indicator, even up to 90-step prediction. The Diebold-Mariano test also confirms that EEMD_LSTM outperforms the single 
LSTM on every step with the majority of 90% confidence level. We also simulated the model by analysing the box and whiskers plot of RMSE, which 
shows that the variance of predicted values ranges between 1.11%. These results show that the proposed forecasting model provides robust results for 
the case of medium-term natural gas prices with excellent forecasting results.

Keywords: Natural Gas Price, Hybrid Forecasting, EEMD, Decomposition, LSTM 
JEL Classifications: C53, Q41, Q47

1. INTRODUCTION

In the context of the Paris Agreement (United Nations, 2015), 
where countries aim to reduce global carbon emissions by 30% 
by 2030, the role of natural gas (NG) as one of the key alternative 
energy sources to reduce the role of crude oil and coal becomes 
very important. NG has the advantages of being safe, efficient, 
and reliable. NG emits much lower carbon dioxide, nitrogen, 
and sulfur levels than other fossil fuel sources. As a result, the 
global use of NG shows a significant increase from 1998 to 2022 
(Figure 1), during which time the use of NG has almost doubled 
(Statista Search Department, 2023) and reached 4 trillion cubic 
meters in 2022. In addition, natural gas is one of the top three 
energy sources in the world, with the most significant increases 
in the United States, South America, Asia, and Europe. However, 

although the use of NG is very similar around the world, the highly 
volatile price changes can affect the sensitivity of society and 
the decisions of buyers regarding NG installations and contracts 
over a long period (Elgharbawy, 2020; Melikoglu, 2013; Zamani, 
2016).

Changes in the value of natural gas price (NGP) are influenced 
mainly by the supply and demand in the market. Price forecasting 
is an essential tool in creating a market integration system to 
anticipate uncontrolled demand fluctuations in the future. NGP 
forecasting is an early indicator in NG supply management to 
balance demand buyers and maintain uncontrolled inflation 
(Tamba et al., 2018). A reliable forecasting method can reduce 
the error gap, create good supply planning, avoid inflation, and 
improve energy security in the future.
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Price forecasting is one of the methods that continue to grow, and 
the latest method that is now getting much attention is Artificial 
Intelligence (AI). One of the popular methods is Deep Learning 
(DL) (Cordoni, 2020; Livieris and Pintelas, 2022). DL is a 
quantitative method based on the concept of neurons working 
in the human brain, where each neuron can self-learn to detect 
input data and try to analyse its relationship with the given output 
in the learning process. AI has a non-linear mechanism that uses 
an activation function not owned by other predictive processes; 
that function is to determine how much each neuron influences 
other neurons to provide prediction to the neuron output. Some 
applications of DL are as follows: Ramyar and Kianfar (2019) used 
an artificial neural network (ANN) for crude oil prices forecasting, 
which gave better results than the vector autoregressive model. 
Sehgal and Pandey (2015) also developed a feed-forward ANN, 
which gives more satisfactory results when compared with the 
machine learning concept of the support vector machine (SVM). 
The latest development of the ANN concept is LSTM; this model 
has been applied by several researchers, including Lu et al. (2021), 
who combined variable selection LSTM for the crude oil price, 
and Zhang et al. (2022), who used hybrid EMD-LSTM for the case 
of variation of electron flux. Among other deep learning models, 
LSTM has the advantage of combining the influence of long-term 
and short-term data in one model without causing vanishing or 
exploding gradients that can occur.

One of the most popular forecasting development concepts 
today is the hybrid decomposition model (Monjoly et al., 2019; 
Ozkan and Karagoz, 2015; Perone, 2022), where decomposition 
techniques are applied together with forecasting models to achieve 
better forecast accuracy results. Examples include Li et al. (2018), 
who used Ensemble Empirical Mode Decomposition (EEMD) 
with random forest to improve the accuracy of daily electricity 
consumption forecasts. In addition, Wang et al. (2015) combined 
EEMD and ARIMA to improve the accuracy of forecasting models 
on annual time series data. EEMD can decompose the initial data 
into each part according to its frequency, so the decomposition 
output has a smooth pattern that is easier to analyse further. Our 
concern is to use the EEMD decomposition to break the original 
data into several more structured patterns so that the forecasting 
model can better understand the inherent features of the data.

Based on some of our explorations, NGP forecasting studies 
are still relatively rare, especially those related to quantitative 

forecasting analysis. Table 1 shows examples of some NGP 
forecasting studies; in this journal, we use hybrid EEMD with a 
combination of LSTM. In this case, most forecasting models use 
a single-model forecasting system. In addition, the forecasting 
step is still in the small step range of 1-10 days ahead (Čeperić 
et al., 2017; Fan et al., 2022; Liu and Sun, 2019; Yan et al., 2018), 
while in this study, we propose longer ranges of step forecasting. 
Therefore, the objectivity of this study is [1] to use the EEMD 
decomposition technique as part of hybrid NGP forecasting, [2] 
to use deep learning LSTM model for forecasting tool, and [3] to 
compare multi-step forecasting from 30 to 90 days ahead to prove 
how good and robust this forecasting model is.

The structure of this journal starts with chapter 1 (Introduction), 
which describes the background of this forecasting study. 
This is followed by chapter 2, which describes the theory of 
decomposition and forecasting as well as the stages of application 
and mathematical formulation. Chapter 3 contains the data 
description and input method for the forecasting model; chapter 
4 contains the data analysis and graph visualisation; and chapter 
5 is the conclusion and future potential project.

2. LITERATURE REVIEW

Let xt be the data set in the historical period t, with t = 1,2,…,T, 
so for one-step forecasting: 1ˆTx += , we formulate the forecasting 
model as: ( ){ }1 1 2  | , ,  ˆ ,t T t Tüüü += = … .  While n-step 
forecasting, where n = number of outputs, can be formulated as

( ){ }1 2 1 2 1 , , ˆ ˆ ˆ,  | , , , ˆ ˆ, , ,  t T T T n t T T T nf x x x x x x x x x x+ + + + += … = … …  (1)

2.1. Ensemble Empirical Mode Decomposition 
(EEMD)
Huang et al. (1996) first introduced Empirical Mode Decomposition 
(EMD) (the forerunner of EEMD), which can separate quantitative 
data into parts to gain an understanding of its inherent features. 
This technique can help understand non-linear and non-stationary 
data. EMD generates multiple intrinsic mode functions (imfs) 
through repeated iterations based on the extreme points of the 
data. As seen in the Figure 3, where three imf have different 
frequencies. The overall formula of imfs and residuals satisfies 
the following principle

x imf rest
i

i� ��
 (2)

Where res is the residual.

However, EMD has a weakness when dealing with mode mixing 
(Figure 3), where the dataset has multiple oscillatory. EMD cannot 
separate the inherent features in xt correctly, resulting in imf results 
that are similar to the original data and fail to capture the features 
in the dataset (Figure 4).

Therefore, Wu and Huang (2009) introduced EEMD by adding 
white noise to make the decomposition process more accurate 

Figure 1: NG consumption worldwide (In billion cubic meters) 
(Statista Search Department, 2023)
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Table 1: Some other studies of NGP forecasting
References Methods Notes
Nguyen and Nabney (2010) Hybrid MLP and GARCH using wavelet decomposition
Čeperić et al. (2017) Combination Neural Network (NN) and SVR Apply feature selection algorithm
Wang et al. (2020) Comparison 3 Models SVR, LSTM and Improved Pattern Sequence 

Similarity Search (IPSS)
The proposed model IPSS performs 
better than other models

Salehnia et al. (2013) Comparison Local Linear Regression (LLR), Dynamic Local Linear 
Regression (DLLR) and Artificial Neural Networks (ANN) models

Combinati on with the Gamma Test

Su et al. (2019) ANN, Support Vector Machine (SVM), Gradient Boosting Machines, 
and Gaussian Process Regression (GPR) 

ANN show better prediction 

Mouchtaris et al. (2021) Gaussian process regression (GPR), regression trees, support vector 
machines (SVM), linear regression, and ensemble of trees

Multi-step (1, 3, 5, and 10) days ahead

Figure 2: Example of  n-step forecasting (source: Lazzeri, 2020, p.5

Figure 3: Example application of EMD

and free from mode mixing. Pseudocode 1 shows the EEMD 
implementation procedure, where the addition of white noise, wn 
(t) = σ × N (0,1), uses a standard deviation (σ) value that adapts to 

Figure 4: Mode mixing

the data value so as not to leave a very large residual. The stopping 
criterion used is similar to EMD, namely when

a. The number of extreme maxima in envelope ( )Et
up

 and extreme 
minima in envelope ( )Et

low
 equal to (or +1) to zero crossing

( ) ( ) { }( )   1, 0, 1up low
t tN E N E N zerocrossing+ − ∈ −

b. and, the mean of all Eup and Et
low  should be 0

( ),  0up low
t tmean E E ≅

While the EMD process (on line 6, pseudocode 1.) or E ⋅ (xt) 
is the following steps: [1] detect the local minimum extrema 
(mini) and (maxi), [2] put the minima into the minimum 

envelope, min Ei t
low→ , and the maxima into another envelope, 

max Ei t
up→ , [3] interpolate between mini, also between maxi with 

cubic splines, [4] determine the value of E ⋅ (xt) from

E x
E E

t
t
up

t
low

� � � �
�� �
2

 (3)

Figure 5 shows an example of solving mode mixing with EEMD. 
The EEMD process on summed imfs (xt + wt) produces better imf 
scales and is continuous along the time scale. Thus, the problem 
of mode mixing in the data can be anticipated.

2.2. Long Short-Term Memory (LSTM)
Hochreiter and Schmidhuber (1997) introduced LSTM as an 
evolution of the previous DL technique, the Recurrent Neural 
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Network (RNN). LSTM belongs to the category of neural networks 
well suited to sequential input data with dependencies on previous 
data. LSTM has advantages over other types of neural networks 
such as: [1] can learn and store specific parameters, [2] has a fixed 
model size, [3] has a constant weight value at each node, and [4] 
is free from exploding and vanishing gradient problems for a 
massive number of neurons.

Where N = number of LSTM nodes, ht = hidden state of t, 
Ct = cell state, Ct  = modified cell state, (wf and bf), (wi and bi), 
(wc and bc), and (wo and bo) = weight and bias of forget gate, input-
gate, cell-state line, and output-gate, σ (∙)= sigmoid activation 
function, and tanh(∙)= tanh activation function.

Pseudocode 2 shows the process where LSTM has three main 
stages: forget-gate, input-gate and output-gate. The analogy of 
this LSTM model is when a student learns in class. Forget-gate is 
how much the student still remembers the lessons in the previous 
class, input-gate is how much the student can understand the 
lessons received at that time, and output-gate is how much the 
student remembers today’s lessons with past lessons after the 
end of the class. Ct or cell state shows the long-term influence 
of the data, while ht-1 (hidden state) is the short-term influence 
of the model.

LSTM can learn by correcting the weight (wf, wi, wc, wo) and bias 
(bf, bi, bc, bo) values at each iteration, called back-propagation. This 
stage attempts to bring the prediction model closer to the actual 
value of the loss function parameter (ℒ).

The weight change occurs in the following formulation

w w
wi

new
i
old

i
� �

�
�

�

�
�

�

�
��

ν

Where η is the learning rate, and 
∂
∂
ν
wi

 is the gradient components.

3. RESEARCH METHODOLOGY AND DATA

3.1. Dataset Description
We use natural gas spot price data (Trading Economics, 2022), a 
dataset based on Henry Hub in Louisiana, United States, interstate 
natural gas pipeline system contracts using a gas pipeline system 
traded in 10,000 million British thermal units (USD/mmBtu). 
Natural gas prices are based on over-the-counter (OTC) and 
contractual parameters—data range from January 2000 to June 
2022 on working days.

Table 2 shows the data range from mean = 4.4813 and standard 
deviation = 2.216; max data shows 15.378, very far from Q3 
percentile = 5.565, indicating that it is susceptible to price spikes. 
Min data is at 1.482, ranging from Q1 = 1.482.

3.2. Model Description
The forecasting process begins with decomposing the data set 
xt using EEMD to produce imfi. The number of LSTM models 
is equal to the number i of imf. Each LSTMi will give a forecast 
output

 
ˆt ix ⋅

 
and the final forecast is

 
ˆ ˆt t i

i

x x ⋅=∑

For the n-step forecasting process, we use recursive multi-step 
forecasting, where each step has only one model to predict 

1 2, , ˆ ˆ ˆ, T T T nx x x+ + +…  with learning data {xt} For n-step there will 
be n iterations, i.e. {x1, x2, …xT} predicts 1ˆTx + then {x1, x2, …xT, 

1ˆTx + }, predicts 2ˆTx +  and so on, so it can be formulated as

( ) { }1

2 1 1

  | , 
   1, 2, , 

, , 

ˆ
ˆ ˆ, , ,  

t T N t

T T T N

f x x x x
N n

x x x x
+

+ + −

 = = ∀ ∈ … 
… …  

 (5)

Pseudocode 2. Feed-Forward of Long Short-Term 
Memory
Given: xt, h0, C0, wf, bf, wi, bi, wc, bc, w0, b0
imfs = []
For t in range (1, N):
if t=0, then ht-1=h0 and Ct-1=C0
#Forget Gate
ft = σ (wf∙[ht-1, xt] + bf)
# Input Gate
it = σ (wi∙[ht-1, xt] + bi)
C tanh w h x bt c t t c� �� ���� �� �1,�

C f C i Ct t t t t� ��* *1


# Output Gate
ot = σ (wo∙[ht-1, xt]+bo)
ht=ot*tanh (Ct)
end for
Return ht

Pseudocode 1. Ensemble Empirical Mode Decomposition
Given: xt, wt~N (0,1), M trials
Imfs = [ ]
repeat
For i in range (1, M):

x x wt
i

t t
i� �

EMD Process ->
 E x imft

i
i� � � �

imf
M

imf
i

M

i�
�
�1

1
imfs.insert (imf)

x x imft
new

t� �
Until stopping criteria is reached
Return imfs

Table 2: Descriptive statistics
Attributes Natural Gas Price
Count 5742
Mean 4.4813
Standard deviation 2.216
Min 1.482
Max 15.378
25% 2.854
50% 3.872
75% 5.565
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Figure 6: Proposed model EEMD_LSTM (source: Li et al., 2018)

Figure 7: Recursive multi-step forecasting (source: Lazzeri, 2020, p.9)

Figure 5: Example of EEMD

3.3. Error Measurement
We use four standard measures of error, MAE, MSE, RMSE 
and MAPE (lower is better), as measures of the success of the 
forecasting model. MAE gives the same weight to small and 
large gaps, while MSE and RMSE give a penalty as the error 
gap increases. For MAPE, Lewis (1982) provides categories of 
forecasting success, where a MAPE value (<10) is classified 
as a very good forecast, (10 ≤ MAPE < 20) is a good forecast, 
(20 ≤ MAPE < 50) is a poorly accurate forecast, and (50 ≤ MAPE) 
is an inaccurate forecast.

1

1  ˆ
n

t t
t

MAE x x
n

=

= −∑  (6)

2

1

 ˆ1 
n

t t
t

MSE x x
n

=

= −  ∑  (7)

2

1

1 ˆ 
n

t t
t

RMSE x x
n

=

= −  ∑
 

 (8)

1

ˆ1  100
n

t t

tt

x x
MAPE

n x
=

 −
=  

 
∑  (9)

4. RESULTS AND ANALYSIS

4.1. Error Plot Analysis
We use the LSTM model without decomposition as a benchmark 
for the proposed model. N-step forecasting is performed from 30 
to 90 steps with an interval of five daily steps, covering short-term 
(<2 months) to medium-term (more than 2 months). No decomposition 
model is performed by directly dividing the dataset into training and 
test data; then, the training data becomes the input of the LSTM model 
without decomposition. This model is updated every n prediction 
value. The proposed model we built and the NGP dataset are on the 
git hub link (https://github.com/HerryKG/EEMD_LSTM-Natural-
Gas). We use jupyter notebook with python version 3.7.

In Table 3, the measurement error values for all parameters tend to 
increase as the value of n increases due to a significantly different 
change for predicting data over a more extended period. The MAE 
value shows that the prediction error for 30-40 steps still has a 
gap of <0.2, while for (between 40 and 80) steps, the gap value 
increases from 0.2 to 0.3. With the mean (4.4813), the Q1 (2.854) 
and the Q3 (5.565), we can assume that the deviation value of 0.2 
is small, <7% of the mean. As for the MSE value, since the error 
value is below 1, the result of the square value of the error will 
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Figure 9: Line plot MSE between EEMD-LSTM and LSTM 
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Figure 11: Line plot MAPE between EEMD-LSTM and LSTM

0

0.2

0.4

0.6

0.8

1

1.2

1.4

30 35 40 45 50 55 60 65 70 75 80 85 90

EEMD-LSTM LSTM

Figure 10: Line plot RMSE between EEMD-LSTM and LSTM 

Table 4: Error measurement no decomposition LSTM
Number of steps MAE MSE RMSE MAPE
30-step 0.3603 0.3233 0.5686 10.0930
35-step 0.3914 0.3474 0.5894 11.0457
40-step 0.4281 0.4410 0.6641 12.4569
45-step 0.4610 0.4681 0.6842 13.1760
50-step 0.5169 0.5446 0.7380 14.6830
55-step 0.5040 0.6835 0.8267 13.2097
60-step 0.5416 0.7403 0.8604 15.2665
65-step 0.6370 0.7261 0.8521 19.8061
70-step 0.6803 0.8218 0.9065 21.6480
75-step 0.7275 0.9117 0.9548 23.5653
80-step 0.7213 1.2361 1.1118 18.6106
85-step 0.6838 1.2204 1.1047 17.8703
90-step 0.6785 1.3293 1.1529 17.6099
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Figure 8: Line plot MAE between EEMD-LSTM and LSTM

Table 3: Error measurement EEMD-LSTM
Number of steps MAE MSE RMSE MAPE
30-step 0.1788 0.0707 0.2660 5.6597
35-step 0.1876 0.0835 0.2889 5.5974
40-step 0.2097 0.0936 0.3059 6.2046
45-step 0.2235 0.1291 0.3594 6.5376
50-step 0.2553 0.1408 0.3753 7.7791
55-step 0.2623 0.1428 0.3779 8.1613
60-step 0.2758 0.1546 0.3931 8.6936
65-step 0.2769 0.1543 0.3928 8.7806
70-step 0.2890 0.1642 0.4052 9.2052
75-step 0.2940 0.1663 0.4078 9.4663
80-step 0.2970 0.1681 0.4100 9.5536
85-step 0.3105 0.1807 0.4251 10.0751
90-step 0.3269 0.1987 0.4458 10.6936

be smaller. Thus, the MSE value is lower than the MAE value, 
and because most of the errors that occur are still below one, the 
MSE value will be far below the MAE.

Meanwhile, the RMSE, which is the root square of the MSE, shows 
how much penalty is imposed compared to no penalty in the MAE. 
The difference between MAE and RMSE is between 0.1 and 0.13, 
resulting in the predicted value being very high compared to the 
actual value. From 30 to 90 steps, most values are below 10 for 
the MAPE value, which is a very good prediction model.

For the model without decomposition (Table 4), the MAE value 
for 30-90 steps is higher than the EEMD_LSTM, ranging from 

0.36 to 0.72 or more than twice the results for the model with 
decomposition. The majority of MSE have values above the MAE. 
These numbers are because most error values are above 1, even at 
85 and 90 steps; the MSE and RMSE values are twice the MAE. 
This condition is far from the results of the decomposition model. 
As for the MAPE, the value of using no decomposition is about 
two times bigger than that of using decomposition.

Figures 8-11 show the line plot to represent the measurement error 
comparison between the EEMD_LSTM and LSTM models in one 
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Table 5: Diebold Mariano test EEMD_LSTM versus 
LSTM
Number of steps P-value
30-step 0.1693
35-step 0.0012
40-step 0.1214
45-step 0.0177
50-step 0.0249
55-step 0.1951
60-step 0.0809
65-step 0.0997
70-step 0.121
75-step 0.1365
80-step 0.1408
85-step 0.1506
90-step 0.3367

Figure 12: The-box-and-whisker-plot RMSE of EEMD_LSTM

Figure 13: 60-step NGP forecasting using EEMD_LSTM

plot. All parameter errors show lower values for EEMD_LSTM 
than LSTM. The MAE gap values of the two models show a huge 
difference, more than six times, consistent with Table 4, where 
no decomposition has a very extreme error gap compared to 
EEMD_LSTM. These differences indicate that the decomposition 
process with EEMD, which separates the imfs from the NGP data, 
can decompose the dataset’s features, making it easier for LSTM 
to predict and avoid very high error gap predictions.

In Figure 11 which shows the MAPE comparison of the two 
models; it can be seen that the MAPE value for EEMD_LSTM 
shows the outperforming forecasting model compared to LSTM. 
The value for EEMD_LSTM shows a value below 10, up to 
90 steps, indicating that this forecasting model is robust in the 
category of very good forecasting. Meanwhile, LSTM has a high 
spike at 75 steps but drops back to the 15-20 range. Nevertheless, 
the no-decomposition model can still be classified as a good 
prediction model.

4.2. Diebold-Mariano Test Analysis
Diebold and Mariano (1995) proposes a test to compare two 
forecasting models based on error measurement. The p-value 
shows whether one forecasting model is more accurate than the 
other and determines the accuracy level.

In Table 5, the P-value varies greatly for several steps, but almost 
all P-values are >0.01, which is the lowest limit for a model to be 
significantly accurate with the benchmark model. The larger the 

n-value, the larger the P-value. Above the 60 steps, the accuracy 
of the EEMD_LSTM model is significantly accurate at a 90% 
confidence level. Below the 60 steps, the 30, 40 and 55 steps are 
also significantly accurate at the 90% confidence level, while the 
60 step shows significantly accurate at the 95% confidence level. 
Only the 35 steps have no accuracy because the P < 0.01, while 
the 50 and 45 steps have the significance of accuracy with 99% 
confidence level.

4.3. Simulation Analysis
One of the disadvantages of the deep learning model is that the 
output could show different prediction values in each iteration. 
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This is because the initial weight and bias values (wo, bo) are 
randomly determined. However, we can use the box-and-whisker 
plot to ensure that the range of the prediction model is robust and 
provides a stable and accurate prediction value. We have performed 
30 simulations of the results of each step with EEMD_LSTM, and 
we will compare the changes in the RMSE values of each step in 
the form of plots. In Figure 12 the interquartile range is between 
0.01 and 0.025, and the distance between the whiskers is between 
0.025 and 0.05; with these values, the difference in RMSE values is 
still classified as small. With a mean of 4.4813 for the dataset, the 
change in the predicted value of each dataset based on the whisker 
distance is approximately 1.11%, while based on the interquartile 
range, it is 0.56%. These values are still relatively small, and we 
can conclude that the EEMD_LSTM model is robust.

4.4. Actual versus Prediction Plot
For example, the 60-step in Figure 13 shows that the model’s 
application to the dataset’s actual movement looks very good. 
The EEMD_LSTM model can learn from the dataset and make 
good predictions. The prediction movement can follow the 
movement of the dataset, and there is not a very large gap between 
the prediction and the actual, which can increase the error value 
very high. Combining decomposition techniques and AI provides 
satisfactory results in the case of NGP.

5. CONCLUSION

In this study, we present a hybrid technique for NGP forecasting 
that combines the EEMD decomposition method and the AI 
deep learning method LSTM. This method has been developed 
to address the weaknesses of previous techniques. It is applied to 
the Henry Hub NGP dataset to obtain forecast predictions close 
to the actual data and reduce measurement errors.

When comparing the proposed model with the non-decomposition 
model, EEMD_LSTM provides better results for all n-step 
predictions for all measurement error parameters. The comparison 
of MAE values shows that the non-decomposition model is twice 
as high as the proposed model. Even for MAPE, EEMD_LSTM 
falls in the category of very good prediction, where the MAPE 
value is below 10 (<10). In contrast, the no-decomposition 
model falls in the lower category, between 10 and 20. This is also 
confirmed by the Diebold-Mariano test, which shows that the 
proposed model outperforms the no-decomposition model in all 
steps. Nine of the 13 prediction steps show significance at the 90% 
confidence level, with the remainder showing significance between 
the 95% and 99% confidence levels. This forecasting model has a 
prediction range value of 1.11% in the box plot simulation analysis. 
These results show that the proposed model belongs to the robust 
forecasting category for NGP predictions.

The use of the EEMD decomposition model, in this case, 
significantly improves forecasting. LSTM has also demonstrated 
its ability to work well with EEMD to provide ‘learning’ on data 
decomposition. The development of forecasting models will 
continue with the development of decomposition techniques 
that continue to experience developments, including Complete 
Ensemble Empirical Mode Decomposition with Adaptive Noise 

(CEEMDAN) and Wavelet Decomposition. The following study 
may use a gated recurrent unit (GRU) as a forecasting model.
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