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ABSTRACT

We have total energy produced by a firm using a non-renewable resource and a perfect substitute backstop. The average cost of the backstop is 
significantly higher relative to the non-renewable resource initially; average backstop costs are modeled to fall with investments in knowledge. 
Investments in knowledge are thought to bring about more efficient techniques to use alternative energies (better technical know-how for wind, solar) 
reducing their average costs. The knowledge stock is modeled as an impure public good such that an individual firm only partially benefits from its 
own knowledge accumulation. We find a firm in equilibrium invests less in the backstop relative to the social planner and that the planner solution 
also leads to faster exhaustion of the depletable resource. Introducing flow pollution, we find the time of switch to the backstop in the planner solution 
depends on the relative magnitudes of the average pollution cost and the average cost of the backstop. An increase in the pollution cost implies slower 
extraction of the exhaustible resource and a later switch (compared to the case without pollution); however for a very high pollution cost, the extraction 
rate rises and switch to the backstop is made sooner leaving some of the exhaustible resource in the ground. We solve both the models explicitly and 
use sophisticated numerical techniques in Mathematica.

Keywords: Exhaustible Resources, Backstop, Knowledge Stock, Investment, Pollution, Numerical Methods 
JEL Classifications: C61, O32, O33, Q32, Q42

1. INTRODUCTION

Efforts to use alternative technologies (backstop technologies) at 
a greater scale have been on the rise in most developed countries 
recently. An example can be the increased reliance on natural gas, 
hydro and wind for electricity generation in the U.S. (reduction in 
use of coal) in the past 2 years1. But significant cost differences 
between conventional dirty sources of energy (coal and gasoline) 
and these backstop technologies still exist. Data from the U.S. 
Energy Information Administration (EIA)’s Annual Energy Outlook 
2014 estimates U.S. average levelized costs for electricity generation 

1 In this paper, by “alternative” we mean cleaner technologies. Examples 
for alternative renewable technologies are solar, wind, hydro and biomass. 
Examples for nonrenewable alternative technologies are nuclear and 
natural gas.

for plants entering service in 2019 (in 2012 $/MWh) to be 95.6 for 
Conventional Coal, 102.6 for Biomass and 130.0 for Solar. This 
paper addresses the question of the optimal path of investment in 
backstops (in the event of substantial cost differences initially) when 
there exists a possibility to switch from a non-renewable resource 
to a backstop technology. We analyze this question from the point 
of view of a firm in equilibrium and in the case of a social planner.

Early work by Das Gupta and Heal (1974) and Stiglitz (1974a, 
1974b) show when exhaustible resources are essential in 
production, positive consumption levels can be maintained with 
physical capital accumulation from early periods. However, 
consumption declines in the long run with an asymptotic 
exhaustion of the non-renewable resource. Tsur and Zemel (2003, 
2005) analyze a switch from an exhaustible resource to a backstop; 
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our work is closest to Tsur and Zemel (2005) in that the switch 
from the exhaustible resource to the backstop depends on the 
amount of (average) cost reduction in the backstop. Reduction in 
the average backstop cost comes through R and D investments in 
the stock of knowledge2. More recent papers on the literature of 
regime switching include (Boucekkine et al. 2003, 2011, 2013a, 
2013b), Acemoglu et al. (2012) where the authors focus on a switch 
from a polluting resource to a backstop. The first part of this paper 
excludes pollution and focuses only on the path of investment and 
the time of switch to the backstop in a model where total energy 
is produced from either an exhaustible resource or a backstop. 
However, to our knowledge, this study is unique in the modeling 
of R and D investments in the knowledge stock reducing average 
backstop cost: We introduce aggregate R and D investments as 
being an impure public good3. This implies that the benefit of 
investing in the knowledge stock (to achieve a lower backstop 
cost) is shared unequally between a representative firm and other 
firms in the economy. Since the social planner fully internalizes 
the benefits of investing in knowledge, we find intuitively that the 
planner carries out greater R and D investments relative to a firm 
in the equilibrium solution. Consequently, the planner achieves 
greater reduction in the average cost of the backstop at the time 
of switch.

We include pollution as a flow in the second part of the paper. The 
aggregate flow of pollution in any period which affects all firms in 
an economy is modeled as external to an individual firm. Schou 
(2000), in the context of a Cobb-Douglas production function with 
human capital and an exhaustible resource and zero extraction 
costs, analyze the steady-state growth rates for output, extraction 
and human capital when the non-renewable resource creates ow 
pollution problems4. Flow pollution has been shown to have 
adverse health effects by Currie and Schmieder (2008) and Graff 
Zivin and Neidell (2011). The latter study finds ozone pollution5 
affects the marginal product of labor even when total labor supply 
is unaffected (study in the context of agricultural workers in a 
farm in California). Currie and Schmieder (2008) find significant 
negative effects of pollutants on birth outcomes: Using data from 
U.S. Environmental Protection Agency’s (EPA) Toxics Release 
Inventory (TRI), the authors particularly find pronounced effects 
on gestation and birth weight. Our results change significantly 
for the planner solution after pollution is introduced to the model. 
Based on the relative magnitudes of the unit pollution cost and 
the average backtop cost, we find the planner might switch to the 
backstop sooner or later compared to the case without pollution. 

2 Intuitively, the switch occurs when the marginal cost of the exhaustible 
resource equals the falling marginal cost of the backstop.

3 Similar to Gray and Grimaud (2010), R and D spillovers are partial in that 
some part of the scope of diffusion is retained by a firm. But firms draw 
on a shared pool of knowledge when carrying out investment activities. 
In this paper, the knowledge stock is private to a firm (with some given 
initial stock) and investment only increases the representative firm’s stock 
of knowledge.

4 We model pollution as a flow to keep the model tractable and obtain 
numerical solutions. Recently, pollution as stock with a ceiling constraint 
has been modeled by Amigues et al. (2012), Amigues and Moreaux (2013) 
and Boucekkine et al. (2013b).

5 Ozone forms from the complex interactions between nitrogen oxides (NOx) 
and volatile organic chemicals (VOCs), both of which are directly emitted 
in the presence of heat and sunlight.

In cases where the non-renewable resource has no value in terms 
of adding to lifetime net profits because of very high pollution 
costs, switching sooner to the backstop is optimal. On the other 
hand, when pollution costs are relatively low, extracting the non-
renewable resource at a slow rate, investing in the backstop in 
lower amounts and switching completely to the backstop later 
is optimal. This would be true for economies with high energy 
demands (e.g. India and China), that in spite of high levels of 
air pollution creating health hazards, these economies continue 
to be heavily reliant on traditional dirty energy sources. It is 
because these economies lack the infrastructure to use backstop 
technologies effectively and also have a substantial fraction of the 
population engaged in mining activities.

The contribution of this work lies in including R and D investments 
in knowledge as an impure public good with the simultaneous 
inclusion of flow pollution. Aggregate flow pollution in any period 
causes damage to all firms but each firm treats the aggregate flow 
as constant. Results for the social planner would be similar in 
case a constant marginal extraction cost is included (instead of 
pollution cost): Relative to the model without any cost for the 
non-renewable resource, the planner would extract greater amounts 
and switch sooner to the backstop when costs become too high. 
In the event of very high costs, the planner would leave some of 
the exhaustible resource unexploited. However, one of our main 
contributions is the fact that we solve both models explicitly: 
In cases where analytical solutions cannot be obtained, we use 
complex numerical techniques in Mathematica.

The following sections of this paper are organized as follows. 
Section 2 describes the main model of the paper (not including 
pollution). Sections 3 and 4 analyze the competitive equilibrium 
solution and the social planner solutions. In Section 5, we add flow 
pollution with Section 6 providing a summary of main results and 
ideas for future research.

2. MODEL

We consider an economy consisting of a continuum of measure 
one of identical firms. Each firm is owned by an infinitely-lived 
household. We abstract from population growth and for simplicity, 
we normalize the total population in the economy to be unity. 
A representative firm in the economy produces a “composite 
commodity” using a non-renewable natural resource and a perfect 
substitute backstop technology6. We consider a representative 
backstop technology in our model. Avoiding aggregation issues 
when there are many alternative technologies in reality to non-
renewable resources such as coal and oil, we assume that the 
backstop is relatively expensive to the non-renewable resource 
initially (as would be clear later, we fix the parameters to depict 
this). Energy, or the sum of the use of the exhaustible resource and 
the backstop, is the only input for a representative firm. It must be 
noted that there is no alternative use of the exhaustible resource 
and it is only used to produce energy. The composite commodity 
in turn is used for both consumption and investment.

6 Das Gupta (2015) models total energy production as the sum of a polluting 
natural resource use and the use of a clean technology.
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The production costs for a firm are divided into cost of the non-
renewable resource and the backstop. We assume the exhaustible 
resource to have zero cost of extraction. We make this simplifying 
assumption in order for the optimal path of energy use (for a 
representative firm) to first involve use of the non-renewable 
resource before switching to the backstop. In other words, it is to 
make the backstop initially uncompetitive with the exhaustible 
resource. The only cost associated with the non-renewable resource 
is the opportunity cost of using much of it in the present so as to 
leave little for future generations. We introduce flow pollution from 
use of the exhaustible resource in a later section. On the other hand, 
the average cost of the backstop is positive which can be reduced 
through investments in the stock of knowledge at each time period. 
Alternative or backstop technologies may have a higher embodied 
technical progress (Boucekkine et al., 2004) or can be more 
sophisticated. Knowledge can be thought of as the technical know-
how to operate alternative clean technologies like wind and solar. 
Investments are expenditures in R and D by a representative firm: 
These may bring about more efficient techniques to use alternative 
clean technologies lowering their average costs. Subsequently, 
we denote use of the non-renewable resource, the backstop, 
the average cost of the backstop technology and investments in 
knowledge in units of the composite commodity.

This paper assumes innovation in technical know-how to operate 
backstop technologies are developed in the lab. They do not 
come about through using the clean technologies themselves (or 
not through a learning-by-doing process). Learning-by-doing 
enhancing the stock of knowledge about the renewable energy 
source, which further helps to reduce its marginal cost has been 
modeled in Hartley et al. (2014) (see also Chakravorty et al. 2011). 
We model increments in the knowledge stock as purely through 
investments or R and D expenditures to keep the model tractable 
numerically. We note again that one of the main contributions of 
this work lies, when solutions cannot be found analytically, in the 
extensive use of computational techniques to arrive at numerical 
solutions.

The production function for the composite commodity is given by

y e= < <−1
0 1

α α,  (1)

where y denotes the composite commodity and e denotes total 
energy use.7 We assume the price of the composite commodity y to 
be constant at unity. Finally, all firms in the economy are assumed 
to be price takers and entry and exit is not permitted in the model.

Total energy production e is in turn given by

e r b= +  (2)

where r ≥ 0 and b ≥ 0 represent exhaustible resource and backstop 
use by a representative firm. The exhaustible resource and the 
backstop are modeled as being perfect substitutes in the production 

7 We understand that y = eα might have been an easier specification. However, 
we implicitly assume 0 < 1 – α < 1 and 0 < α < 1 to be the respective 
shares of energy and labor. In the numerical part of the paper, we assume 
α = 0.667.

of total energy. Furthermore, each household is assumed to have 
an identical initial endowment of the stock of the exhaustible 
resource. A firm (owned by an infinitely-lived household) draws 
down this initial stock of the exhaustible resource according to

0
0

∞

∫ ≤rdt s  (3)

which implies,

s r= −  (4)

where s0 > 0 denotes the initial stock of the exhaustible resource.

The average cost of the backstop in the production of total energy 
is given by

M n q a
N n

q a( ) = + > > ≤ ≤−1 0 0 0 1β β β, , ,  (5)

where n denotes the stock of knowledge for a representative firm. 
The above specification is similar to that adopted by Tsur and 
Zemel (2005) in that increases in the stock of knowledge carried 
out by a representative firm helps reduce the future average cost of 
the backstop. Here N represents the aggregate stock of knowledge 
in the economy and is given by

N n djj= ∫
0

1

 (6)

Such that nj stands for the knowledge stock of the jth firm in the 
economy. q > 0 and a > 0 are the cost parameters of the model. A 
representative firm carries out investment to increase its knowledge 
stock represented by the equation

n i=  (7)

where i ≥ 0 denotes investment for a representative firm. Firms 
in an economy are identical in that they are endowed with initial 
knowledge stock n0 > 0. Equation (7) shows a concave function 
implying that its cheaper for a firm to invest little amounts every 
period rather than a lot in any one period.

Equations (5-7) indicate the divergence between the optimal 
(planner) and equilibrium solutions. Individual firms, thinking alike 
that their own investment decisions only have a negligible impact 
on the aggregate stock of knowledge in the economy N, take it as 
given. Equation (5) shows that only the part ( )

a
N n1−β β  of the

 

average backstop cost falls with knowledge accumulation while 
the part q is fixed. In the equilibrium solution an additional unit of 
investment in knowledge by a firm reduces the average backstop 
cost by the term nβ whereas N1-β captures by how much backstop 
costs would decrease if the aggregate knowledge stock increased 
by one unit. In other words, a representative firm in equilibrium 
only partially benefits from its own investment decisions. On the 
contrary, the social planner fully internalizes the positive externality 
of investments in the stock of knowledge and invests a greater 
amount compared to an individual firm in the equilibrium solution. 
In an essence similar to Gray and Grimaud (2010), we model R 
and D spillovers being partial as some part of the scope of diffusion 
of an innovation is retained by only the representative firm. 
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However, we differ in that R and D activities or investment are 
purely private to a firm which increases its own knowledge stock; 
individual firms do not draw on a shared pool of technological 
knowledge when carrying out R and D. In equation (5) the degree 
of public versus private benefit of knowledge accumulation is 
captured by the parameter β. When β = 0, all benefits of investment 
are fully external to a representative firm and it cannot reduce the 
average backstop cost in any way. At the other extreme of β = 1, 
the average cost of the backstop only depends on the individual 
stock of knowledge of a representative firm. In this case, the full 
extent of externality is internalized by an individual firm and the 
equilibrium and planner solutions coincide.

3. COMPETITIVE EQUILIBRIUM 
SOLUTION

3.1 The Problem
The representative firm maximizes the Present Discounted Value 
(PDV) of net profits over infinite periods. Net profits are given by 
the market value of the composite commodity net of input costs 
and investments in knowledge. We have

π = − ( ) −y M n b i  (8)

Substituting from above in (8), the problem for a representative 
firm is given by

max ( )
, ,b r i

t

tb r q a
N n

b i e dt
{ }

=

∞
−

−
−∫ +( ) − +





−
0

1

1

α
β β

ρ  (9)

subject to (4), (7) and (6) where r > 0 is the discount rate. 
The initial stocks of the non-renewable resource s0 and that of 
knowledge n0 are given.

The current-valued Hamiltonian of the above problem is

H b r q a
N n

b i i r b r i= +( ) − +





− + − + + +−
−

1

1 1 2 1 2 3

α
β β λ λ θ θ θ

s and n are the states of the system and b, r and i are the controls. 
We denote the shadow prices by li ' s and the Lagrange multipliers 
associated with the controls by respective qi ' s. λ θi i, ≥0 . The 
first-order conditions and the transversality conditions are given 
by

∂
∂

= −( ) +( ) − +




+ = =−

−

H
b

b r q a
N n

b1 0 0
1 1 1

α θ θα
β β ,  (10)

∂
∂

= −( ) +( ) − + = =−H
r

b r r1 0 0
2 2 2

α λ θ θα
,  (11)

∂
∂

= − + + = =H
i i

i1
2

0 01

3 3

λ θ θ,  (12)

1 1

.

1 1 1
H a b
n N n 

   − +

∂= − = −
∂  (13)

λ ρλ ρλ
2 2 2

.

= − ∂
∂

=H
s

 (14)

lim
t

te t n t
→∞

− ( ) ( ) =ρ λ
1

0  (15)

and, lim
t

te t s t
→∞

− ( ) ( ) =ρ λ
2

0  (16)

As all firms are identical, the average knowledge stock for the 
economy N equals the individual stock of knowledge n for a 
representative firm. Imposing the aggregate consistency condition 
N = n in the above first-order conditions, we can write (10) and 
(13) as

1 0 0
1 1

−( ) +( ) − +




+ = =−α θ θαb r q a

n
b,  (17)

λ ρλ ρλ β
1 1 1 2

.

= − ∂
∂

= −H
n

a
n
b  (18)

the other conditions given by (11), (12), (14), (15) and (16) remain 
unchanged.

The above necessary conditions imply either interior or corner 
solutions for the control variables b, r and i. However, when i = 0, 
the marginal benefit of investing in knowledge is infinity compared 
to a marginal cost of 1. So investment would always be positive in 
the model i > 0. From (7) and (12), setting q3 = 0 we get

n i= = λ
1

2
 (19)

Equation (19) would be a key equation for analyzing the model as 
it relates the time path of investment to that of the shadow price 
for the knowledge stock l1. Equation (14) shows the Hotelling rule 
is satisfied as the shadow price of the stock of the non-renewable 
resource l2 always rises at the constant rate of discount.

3.2 Energy, Investment and Profit Profiles
Analyzing the above necessary conditions for optimality, we find 
the representative firm would first only use the non-renewable 
resource followed by an instant of simultaneous use of both the 
non-renewable resource and the backstop and then periods of only 
using the backstop technology. This can be explained with the help 
of the following cases.

Case I: The interior case of b > 0 and r > 0. From (10) and (11), 
we get q1 = q2 =0. This implies

1−( ) +( ) = +





−α αb r q a
n

 (20)

and, 1
2

−( ) +( ) =−α λαb r  (21)

The non-renewable resource and the backstop being perfect 
substitutes (equal marginal benefits), (20) and (21) would be 
satisfied only at one instant in time when the marginal cost of 
the backstop equals the shadow price of the exhaustible resource 
stock. Total energy use ê  in this case is given by

1

1

2

ˆ 1 1  e aq
n



 


 
 − − = =    +    (22)
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Case II: The corner case of r > 0 and b = 0. This implies q1 > 0 
and q2 = 0 from (10) and (11). Here

1 1−( ) = +




−−α θαr q a

n
 (23)

and, 1
2

−( ) =−α λαr  (24)

Total energy use by a firm would equal its use of the non-renewable 
resource. From (24)

1

2

1  ˆ ˆe r



 −= =     (25)

With 0 < α < 1, (25) implies falling non-renewable resource 
extraction over time at a constant rate with the rise in l2. 
Equation (23) determines the value of θ λ

1 2
= +




−q a

n
 which 

must be falling over time. Furthermore, substituting b = 0 in (18) 
we get

λ ρλ
1 1

.

=  (26)

We get the interesting result that both the co-states l1 and l2 grow 
at the constant rate r when r > 0 and b = 0. For periods when the 
backstop is not used, the shadow price of the knowledge stock 
would increase at a rate higher than that given by (18) as additions 
to the stock of knowledge become even more valuable with a 
possibility to switch to a cheaper backstop in future.

Case III: The other corner case is of b > 0 and r = 0. This implies 
q1 = 0 and q2 > 0 from (10) and (11). In this case total energy use 
follows the time path of backstop use for a representative firm. We get

1

1  ˆê b aq
n




 

− = =  
+    (27)

Given that 0 < α < 1, backstop use rises over time with growing 
knowledge accumulation. However, in reality there are geophysical 
limits or a certain carrying capacity of the earth which puts a check 
on this rising energy use. From equations (10) and (11) we find 
the equilibrium value of θ λ2 2= − +





q a
n

 which is rising over 

time. The time paths of the co-states l1 and l2 are given by (18) 
and (14).

From (22), (25) and (27), we can conclude that a representative 
firm’s profile for total energy use would include

1. Only exhaustible resource use whenever λ2
8

< +





q a
n

i8

8 Given no alternative use of the exhaustible resource except producing 
energy, and perfect substitutability between the exhaustible resource and 
the backstop, a firm would find it rational to use the cheaper input at first 
before switching to the relatively expensive backstop.

2. An indeterminate division between the exhaustible resource and 
the backstop when λ2 = +





q a
n

3. Only backstop use whenever λ2 > +





q a
n

.

While extraction costs are assumed to be zero for the non-
renewable resource, we assume its initial shadow cost l

2
0( )  to 

be sufficiently low such that its rational for a firm to start producing 

energy using only the exhaustible resource ( λ
2

0

0( ) < +






q a
n

). 

Since leaving any stock of the non-renewable resource in the 
ground is not optimal, the firm would exhaust it completely before 
switching over to the backstop. A representative firm would extract 
the non-renewable resource (and invest in the knowledge stock) 
in a manner such that this time of switch also corresponds to the 
date when the marginal costs of b and r become equal. Denoting 
the date of exhaustion of the initial resource stock s0 as T, we can 
summarize the production of total energy e for a firm in equilibrium 
in Figure 1. For all practical purposes, we capture the above three 
cases in two phases, Phase 1 ( , )r b> =0 0  and Phase 2 
( , )r b= >0 0 . We assume that only the exhaustible resource is 
used until T and the backstop is used from the very next instant. 
That is to say, non-renewable resource use at T would equal 
backstop use ( ˆr̂ b≡  at T). In Figure 1, the energy profile for a firm 
is V-shaped and continuous but with a kink at the time of switch 
from the exhaustible resource to the backstop. To check if the 
transversality condition (16) is satisfied for the energy profile for 
a firm in equilibrium, we can modify it for a finite horizon case 
as

e T s TT− ( ) ( ) =ρ λ
2

0  (28)

where T denotes the date of exhaustion for the stock of the non-
renewable resource. The condition is satisfied as s(T) = 0.

Turning to the path of investment in the stock of knowledge for 
a representative firm, we find from equations (19) and (26) that 
investment over time grows at the constant rate of discount until the 
time of switch T to the backstop technology. Moreover, combining 
equations (19) and (26), we can see that the path of investment 
as a function of the knowledge stock n would exhibit a similar 

Figure 1: Energy profile in equilibrium
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profile to the path of investment over time.9 Figure 2 shows the 
path of investment for the equilibrium solution as a function of 
the knowledge stock (n0 in the figure represents the initial stock 
of knowledge). After growing at a constant rate until the time of 
switch to the backstop, Figure 2 shows that investment starts to 
fall as the stock of knowledge gets larger. In Figure 2, n̂   refers to 
the stock of knowledge at T or the time of switch to the backstop. 
The fall in investment after T can be seen by combining equations 
(18) and (19): Intuitively, after a firm switches to the backstop 
technology b and given that the model does not allow the individual 
firm to switch back to the exhaustible resource r (as its already 
exhausted), additions to the stock of knowledge are not as valuable 
as before the switch to the backstop. This is verified by comparing 
equations (18) and (26) which shows that the shadow price of the 
knowledge stock l1 grows at a slower rate when b > 0 as opposed to 
when r > 0. So the average cost of the backstop falls at a faster rate 
when a representative firm only uses the non-renewable resource.

Now we consider the situation of profits for a firm in the 
equilibrium solution. Net profits for a representative firm are given 
by total production net of the cost of the backstop and investments 
in knowledge. Each household is assumed to consume its entire 
profits. The net profit over time for a firm in equilibrium is shown 
in Figure 3. Firm profits fall in the phase of only non-renewable 
resource use due to a rising l2 (as the stock of the exhaustible 
resource keeps falling) combined with increasing investments in 
the knowledge stock10. The jump in profits profile occur as backstop 
costs kick in at the time of switch to the backstop technology or T. 
The magnitude of this jump equals the average cost of the backstop 
M(n) at the time of switch. With knowledge being accumulated 
at a decreasing rate by a firm after T and combined with growing 
backstop use, profits rise slowly in this phase.

4. SOCIAL PLANNER SOLUTION

The social planner fully internalizes the external benefits of 
investments in the knowledge stock which helps reduce the average 

9 We show the investment profile over time in the Appendix.
10 Although we have a continuum of identical firms in the economy and there 

is no trading of the non-renewable resource stock between firms, even if the 
possibility of trading is allowed, firms’ would buy and sell the exhaustible 
resource only at the shadow price of l2.

cost of the backstop. As mentioned previously and compared to 
the equilibrium solution, it is as if β = 1 for the planner solution. 
We can impose the aggregate consistency condition N = n before 
maximization; equation (5) now changes to

M n q a
n

( ) = +
 (29)

The maximization problem for the planner solution can then be 
written as

max ( )
, ,b r i

t

tb r q a
n
b i e dt

{ }
=

∞
− −∫ +( ) − +





−
0

1 α ρ  (30)

subject to (7), (4) and (6). We write the subsequent Hamiltonian as

H b r q a
n
b i i r b r i= +( ) − +





− + − + + +−1
1 2 1 2 3

α λ λ θ θ θ

As before, s and n are the states of the system and b, r and i are 
the controls. We denote the shadow prices by li

' s and the Lagrange 
multipliers associated with the controls by respective qi ' s 
λ θi i, ≥ 0 .

From the first-order conditions, we get (17), (11), (12), (14-16) as 
before. Equation (18) now changes to

λ ρλ
1 1 2

.

= − a
n
b  (31)

From the necessary conditions for optimality, the time paths for 
b, r and i ould be identical to those for the equilibrium solution. 
Investment in the knowledge stock is always positive as in the 
equilibrium solution and its time path would be given by (19). 
These imply that the optimal energy profile is also V-shaped 
in the planner solution. That is the planner uses only the non-
renewable resource at first before switching completely to the 
backstop technology (this time of switch corresponds to the date 
of exhaustion for the exhaustible resource)11. However, level 
differences at each point in time arise between the two energy 

11 The modified transversality condition in equation (28) would be satisfied as 
the non-renewable resource is fully exhausted at the time of switch.

Figure 2: Investment profile in equilibrium
Figure 3: Equilibrium net profits
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profiles because of different initial values of the shadow price of 
the non-renewable resource stock and a different T for a firm in 
equilibrium and the social planner. Figure 4 combines the energy 
profiles for the planner and equilibrium solutions (in Figure 4 and 
in the following figures, S.P. stands for social planner and C.E. 
for competitive equilibrium). The points of kink, which show the 
times at which the non-renewable resource stock is exhausted and 
the switch is made to the backstop technology, is different across 
the two solutions. The planner starts with a higher non-renewable 
resource extraction from the initial period and sooner exhausts its 
given stock. Since the planner extracts more of the exhaustible 
resource stock every period relative to a firm in equilibrium, 
investment would always be higher in the optimal solution 
compared to the equilibrium one. Investment being higher until 
the time of switch to the backstop T implies a higher knowledge 
stock at T for the planner solution. As Figure 4 shows, this higher 
knowledge stock also allows the social planner to have a greater 
use of the backstop after the time of switch.

We compare the investment profiles for the equilibrium 
and planner solutions in Figure 5. As discussed previously, 
investment profiles as a function of the knowledge stock n would 
have a similar shape as the investment time paths (n0 once again 
represents the initial stock of knowledge). The graphs for both 
the equilibrium and planner solutions show that investment 
rises at a constant rate until the time of switch to the backstop 
technology and then falls. Investments in knowledge are more 
valuable during periods of only non-renewable resource use 
for both the representative firm in equilibrium and the social 
planner. Figure 5 is one of the central ones of the paper. It 
shows precisely the underinvestment problem in knowledge in 
the equilibrium solution compared to the optimal one. Hence 
the planner affects a larger decline in the average cost of the 
backstop.

Finally, we compare the net profits between the equilibrium and 
planner solutions. Figure 6 combines both the graphs. The planner 
extracts more out of the non-renewable resource stock and thus 
invests greater amounts relative to a firm in equilibrium. Over time, 
as the rate of exhaustible resource extraction falls but investments 
in knowledge keep increasing (until the switch to the backstop), 
profit for the optimum solution would fall below that for the 
equilibrium solution briefly. At the time of switch T, net profits 
are higher for the planner solution12 compared to the equilibrium 
one: This is because both n̂  and ˆr̂ b≡  are higher for the planner 
solution. Net profits continue to be higher for the social planner 
even after T as the total value of production dominates a higher 
backstop use and greater investment.

4.1 Comparison of the Equilibrium and Planner 
Solutions
We compute the time of switch to the backstop T, the key values 
for the control variables and the shadow prices using numerical 
methods in Mathematica. We explain some of the techniques used 
in the Appendix.

12 The jump in profits for both solutions at the switch point equals the average 
cost of the backstop given by (5).

We use standard values in the literature of α = 0.667 and  = 0.04 
and fix the other parameter values to be β = 0.33, q = 1, a = 5, 
s0 = 1  and n0 = 1 . We do not have any intuition on the value of 
the externality parameter β and assume that only 1

3
 of the benefits 

of investments in knowledge accrue to an individual firm in 
equilibrium. We summarize the results in Table 113. That the social 

13 In parity with previous notation, bT
*  and rT

*  represent the values of b̂  and 
r̂  at T respectively.

Figure 4: Energy profiles for the planner and equilibrium solutions

Figure 5: Investment profiles for the planner and equilibrium solutions

Figure 6: Net profits for the planner and equilibrium solutions
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planner values investment in the stock of knowledge much more 
is reflected in the values of 1 0

*
( ): The corresponding value for 

the planner is more than twice than that for the representative firm. 
As a result, initial investment i*( )0  is significantly lower in the 
equilibrium solution compared to the planner solution. This leads 
to a lower accumulated knowledge stock for a firm in equilibrium 
relative to the social planner at the time of switch to the backstop: 
The accumulated knowledge stock is 2.88 for the optimal solution 
and 2.13 for the equilibrium solution. We see that the representative 
firm extracts the non-renewable resource at an inefficiently slow 
rate: An individual firm takes 17.8 years whereas it takes 
14.66 years for the planner to run out of the exhaustible resource 
and switch completely to the backstop. Expectedly, this is reflected 
in the higher initial shadow price of the exhaustible resource l2 0

*
( )  

for a firm in equilibrium. Since the planner extracts more out of 
the initial stock of the non-renewable resource, the value of the 
backstop at the time of switch is higher for the planner at 
0.04 compared to 0.03 for the representative firm in equilibrium.

5. INTRODUCING FLOW POLLUTION TO 
THE MODEL

We introduce flow pollution to the above model and explore 
how the results are affected for the planner and equilibrium 
solutions. Flow pollution has been proven to have adverse health 
effects as in studies by Currie and Schmieder (2008) and Graff 
Zivin and Neidell (2011). Flow pollution as a cost in profits for 
a representative firm was included by Schou (2000). The author 
studies the difference in long-run growth rates between the 
equilibrium and planner solutions and finds that a greater influence 
of the negative externality of pollution cost would improve the 
long-run growth rate for both the solutions. Schou (2000) also finds 
that since the non-renewable resource is essential in production, 
the consumption path for the market economy may approach 
zero in the long-term. In our model, pollution at any instant of 
time is caused by the aggregate use of the exhaustible resource 
in production by all firms. Furthermore, the representative firm 
ignores the effect of its own action on total pollution; however 
the effect of total pollution (in a given period) on firm profits is 
negative. For simplicity and in order to get possible solutions, we 
assume the average cost of pollution to be constant.

5.1 The Equilibrium and Planner Solutions
The structure of the model is identical to the previous one when 
there was no pollution. The only difference lies in the net profit 
function for a representative firm. Since a firm in equilibrium now 
faces the additional pollution cost, net profits for a representative 
firm j in each period is given by

π α
β β= +( ) − +





− −−
−b r q a

N n
b i dR1

1  (32)

where R r djj= ∫
0

1

 (33)

such that R represents aggregate non-renewable resource use. d > 0 
measures the pollution cost per unit for a representative firm. A 
firm does not take into account the fact that its own use of the 
exhaustible resource adds up to the aggregate pollution flow in 
any given period. However, the representative firm bears a cost for 
this total pollution flow: This can be thought of as an instantaneous 
damage cost or a negative effect on firm productivity (similar to a 
negative effect on worker productivity in Graff Zivin and Neidell 
(2011)). The problem for a representative firm is then given by

max ( )
, ,b r i

t

tb r q a
N n

b i dR e dt
{ }

=

∞
−

−
−∫ +( ) − +





− −
0

1

1

α
β β

ρ  (34)

subject to (7), (3), (6) and (33). n0  and s0  are given and the other 
parameters remain the same as before.

In the equilibrium solution, a firm treats dR as constant. As a result, 
the behavior of the representative firm in competitive equilibrium 
remains identical with the previous case without pollution cost. 
The first-order conditions are (11), (19), (14-18) and the paths of 
b, r and i remain the same. The energy profile is given by Figure 1; 
pollution as a damage cost would only affect a firm’s net profits 
in equilibrium.

Including flow pollution, the social planner internalizes the 
external benefits of investments in knowledge as well as the effect 
of pollution from aggregate use of the exhaustible resource. So 
imposing the aggregate consistency conditions N n�� =  and R r�� =  
the maximization problem for the planner solution can be written 
as

max ( )
, ,b r i

t

tb r q a
n
b i dr e dt

{ }
=

∞
− −∫ +( ) − +





− −
0

1 α ρ  (35)

subject to (7), (3), (6) and (33). As before, n0  and s0  are given 
and the other parameters remain unchanged. The subsequent 
Hamiltonian is

H b r q a
n
b i dr i r b r i= +( ) − +





− − + − + + +−1
1 2 1 2 3

α λ λ θ θ θ  

 (36)

where li ' s denote the respective shadow prices and qi ' s are the 

Lagrange multipliers associated with the controls. λ θi i, ≥ 0 . The 

Table 1: Comparison of equilibrium and planner solutions
Values Equilibrium Planner

*
1 ( 0 ) 0.087 0.189

*
1 1 ( )ˆ T=  0.177 0.34

ˆ Tn n= 2.129 2.884

T 17.803 14.655

b rT T
* * �≡ � 0.031 0.043

r* ( )0 0.091 0.103

i* ( )0 0.002 0.009

l2 0
* ( ) 1.642 1.521

PDV of net profits 7.865 8.035
PDV: Present Discounted value
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necessary conditions for optimality imply equations (12), (14-17), 
and (31). The only difference lies in the first-order condition with 
respect to r which now becomes

∂
∂

= −( ) +( ) − − + = =−H
r

b r d r1 0 0
2 2 2

α λ θ θα
,  (37)

5.1.1 Energy profile and investment in the social planner 
solution
We follow a similar sequence as before of analyzing cases of 
simultaneous use of the non-renewable resource and the backstop 
followed by cases of only exhaustible resource or only backstop 
use. Since d is a constant, the above necessary conditions imply 
corner solutions for the controls and while investment is 
given by (19) as before. When b > 0, r > 0  ( )θ θ

1 2
0= = , we get

1
2

−( ) +( ) = +−α λαb r d  (38)

and (20). Total energy use is given by

1

1

2

1ˆ 1e a dq
n



 



− −= =   + +    (39)

When we have r > 0, b = 0 ( , )θ θ
1 2
0 0> = , total energy use is 

given by

1

2

ˆ ˆ 1e r
d




 −= =  +   (40)

with θ λ
1 2
= +




− −q a

n
d . On the other hand, the energy profile 

with only using the backstop, b > 0, r = 0, ( , )θ θ
1 2
0 0= > , is 

given by (27) as before with θ λ2 2= + − +





d q a
n

.

The social planner would produce total energy using the cheaper 
input in any given time period. The planner would only use the 

exhaustible resource as long as λ2 + < +





d q a
n

, an indeterminate 

mix of both the inputs when λ2 + = +





d q a
n

 and only the 

backstop when
 λ2 + > +





d q a
n

.
 But it is important to note that 

l2  now depends on the value of d14. For a high value of d (relative 
to q or the part of the average backstop cost that cannot be 
influenced through investment in knowledge), the shadow price 
of the non-renewable resource stock l2  falls to zero15. That is to 
say, an additional unit of the exhaustible resource would not have 
any effect on discounted lifetime net profits. Also note that, the 
necessary conditions imply that if λ

2
0 0( ) = , l2  remains at zero 

forever. However, for λ
2
0= , we may still have d q a

n
< +

0

 

14 We assume a given d such that the value of λ2 0( )  justifies the planner using 
the exhaustible resource at first to produce energy.

15 This is shown in Table 2.

implying that the planner uses the non-renewable resource at first 
(until the time when 

ˆ
ad q
n

= + ). As long as the value of d is below 

a critical threshold such that λ
2
0 0( ) > , the time of switch to the 

backstop technology depends on when the marginal costs of the 
exhaustible resource and the backstop are equalized and not 
necessarily whether the initial resource stock is completely 

exhausted at that time. Intuitively, for any l2 , if d q a
n

> +





0

, 

the planner would switch to the backstop from the very beginning. 
The initial stock of the exhaustible resource s0  is left intact in this 
case. Denoting the time of switch from the exhaustible resource 
to the backstop technology by T as before, the following conditions 
determine T

λ
2

0t( ) ≥  (41)

0
0

T

r t dt s∫ ( ) ≤  (42)

λ
2

0

0
0T r t dt s

T

( ) ( ) −






 =∫  (43)

λ2 T d q a
nT

( ) + = +  (44)

Equations (41) and (42) are derived from constraints for the 
maximization problem. Equation (43) indicates that the net 
stock of the non-renewable resource valued at its shadow price 
should equal zero at the time of switch T. It shows that some 
stock of the exhaustible resource may be left in the ground 
if its shadow price falls to zero: The exhaustible resource is 
completely exhausted only if its shadow price is positive at the 
time of switch to the backstop. We would have a trivial case 
when the initial non-renewable resource stock is completely 
exhausted and its shadow price falls to zero. Equation (44) 
indicates that the marginal costs of the two energy inputs should 
be equal at T16.

Lemma 1 shows how the value of the average cost of pollution d 
relative to the constant portion of the average cost of the backstop 
q determines whether λ

2
0 0( ) = .

Lemma 1: d > q is a necessary but not sufficient condition for 
λ
2
0 0( ) = .

Proof: Given (14), λ λ
2 2
0 0 0( ) = ⇒ ( ) =T  for t T= . Then 

equation (44) ⇒ =
−

n a
d qT  where T denotes the time of switch 

to the backstop. As nT > 0 , this implies d q> . Given the values 
of the parameters and solving the model numerically, as d ≥ 2 57.  
for λ

2
0 0( ) = , the above lemma is proved.

Figure 7 shows the optimal energy profiles for various values of 
the pollution parameter d. An increase in unit pollution cost d 
makes the non-renewable resource less valuable. The shadow price 

16 Note that ˆ=Tn n ; this is mentioned in Table 2.
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of the stock of the exhaustible resource at time zero l
2
0( )  falls 

when d increases (Table 2 clearly illustrates this effect). However, 
as long as 

2
0> , a higher d would make the planner extract the 

non-renewable resource at a slower rate and thus switch later to 
the backstop (note from (43) that there would be complete 
exhaustion of the initial stock s0). This is because of the fact that 
although the exhaustible resource is still valuable, a higher unit 
pollution cost makes it less attractive to use in the optimal solution. 
Thus the point of kink in the V-shaped energy profile showing the 
time of switch moves to the right and the path of non-renewable 
resource use gets flatter. Given the parameters, we compute the 
critical value of d ≥ 2 57.  for λ

2
0 0( ) =  and In this case, the path 

of exhaustible resource extraction would be flat and the time of 
switch to the backstop would also fall. Finally, whenever 

d q a
n

≥ +










0

, the planner would switch immediately to the 

backstop leaving all of the initial exhaustible resource stock in the 
ground.

We show the energy profiles for the optimal and equilibrium 
solutions for various values of d in Figure 8. The dashed lines 
(S.P. wpol) show the planner profiles when pollution is included 
to the model. The solid lines are paths of the optimal (S.P.nopol) 
and equilibrium (C.E.) solutions for the model without pollution. 
Recall that the energy profile for a representative firm in 
equilibrium doesn’t change when pollution is included to the 
model; for the planner solution, flow pollution would only affect 
the first phase of the energy profile when using the exhaustible 
resource. Energy profiles for the planner solution for both the 
models would eventually merge after the switch is made to the 
backstop. Figure 8 shows that the time of switch to the backstop 
increases for the optimal solution when pollution is introduced to 
the model. This was explained previously in that for d < 2 57. , a 
rise in unit pollution cost d makes the planner conserve the resource 
for longer periods. From the previous model without pollution, T 
or the time of switch to the backstop equaled 17.8 years for the 
equilibrium solution and 14.7 years for the optimal one. After 
including pollution, T = 15.8 years for a relatively low value of 
d = 0.6 and T = 19.3 years when d = 2 in the planner solution. For 
both these cases, the non-renewable resource stock is fully 
exhausted. For a higher unit pollution cost of d = 3 (d ≥ 2.57), the 
given stock s0 is not fully exhausted and the time of switch to the 

backstop falls to 9.8 years. As an illustration, Figure 9 shows the 
time of switch to the backstop T as a function of the pollution 
cost d. We see that as long as d <2.57, T rises with a rise in d. 
However, for d ≥ 2.57, T falls with a rise in unit pollution cost as 

2
0= .

Turning to the path of investment in knowledge for the planner 
solution17, since the path of extraction of the non-renewable 
resource changes to (40), this leads to a change in investment at 
every time period until T. Intuitively, from (19) and (31), the path 
of 1  changes during the phase of only non-renewable resource 
use (when l1  grows at the rate of discount ρ). This implies a 
change in the initial shadow price of the knowledge stock *

1 ( 0 )  
and the accumulated stock of knowledge at the time of switch to 
the backstop or n̂ . Figure 10 plots investment profiles as a function 
of the knowledge stock for both the equilibrium and the optimal 
solutions for various values of d18.The dashed lines show 
investment profiles for the planner solution (S.P.wpol) when 
pollution is introduced to the model. The solid lines are investment 
paths for the equilibrium (C.E.) and optimal (S.P.nopol) solutions 
when pollution is not included. Interestingly, we observe that 

17 We do not analyze profit profiles as in the previous model without cost of 
pollution. The only interesting case would be for the planner solution when 
the profit profile would not exhibit any discontinuity or jump at the time of 
switch to the backstop as 2 0= .

18 Although the investment profile for the equilibrium solution does not 
change after introducing pollution to the model, we purely plot this for 
reference.

Figure 7: Planner energy profiles for various values of d

Table 2: Planner solutions for various values of d
Pollution cost

λ1 0* ( ) i* ( )0 λ2 0
* ( ) r* 0( ) ^ Tn n= T % of s0 used

d=0 0.189 0.009 1.521 0.103 2.884 14.655 100
d=0.6 0.178 0.008 1.109 0.086 2.962 15.833 100
d=0.9 0.172 0.007 0.913 0.079 3.002 16.487 100
d=2 0.148 0.005 0.268 0.056 3.162 19.323 100
d=2.57 0.134 0.004 0.0003≈0 0.047 3.263 21.413 100
d=2.6 0.154 0.006 0 0.046 3.125 18.636 85.5
d=3 0.249 0.015 0 0.037 2.5 9.838 36.4
d=4 0.395 0.039 0 0.024 1.667 3.166 7.6
d=6 0.539 0.072 0 - 1≡n0 0 0
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optimum investment is much bigger than investment in the 
equilibrium solution even after the introduction of pollution. As 
before, the points of kink in the investment profiles correspond to 
the accumulated stock of knowledge at the time of switch to the 
backstop or  n̂ . Optimal investment profiles move down and to 

the right for d = 0.6  and d = 2 during the phase of only using r 
before finally merging with the profile when pollution cost is not 
included. This is because only the path of exhaustible resource 
use changes in the planner solution after pollution is introduced: 
This would change the path of investment initially (hence causing 
a change in T) before merging with the investment profile of the 
previous model without pollution. For 0 2 57< <d . , a rise in the 
unit pollution cost makes the planner conserve the exhaustible 
resource over longer periods and invest less as compared with the 
model without pollution. However, the time effect of extending 
the life of the exhaustible resource dominates the effect of smaller 
investments until T and thus the accumulated stock of knowledge 
at the time of switch n̂  increases. For d = 3  (since 2  falls to 
zero), investments in knowledge by the planner during the period 
of only non-renewable resource use would be greater as compared 
with the previous model. Once again, the time effect of a sooner 
switch to the backstop dominates the effect of greater investments 
in knowledge causing a fall in n̂  . When d = 6  (here, given the 
model parameters d q a

n
= +

0

), 
0

n̂ n=  as the backstop is adopted 

from the very beginning by the planner. Investment falls with 
accumulation of more knowledge.

5.2 Numerical Solutions with Flow Pollution
Table 2 shows numerical solutions for the social planner 
including unit pollution cost and for the previous model without 
pollution19. We use values of  = 0 667.  and  = 0 04.  and fix 
the other parameter values to be  = 0 33. ,  q =1 , a = 5, s

0
1=  

and n0 = 1. The results are intuitive and we state the main points 
from Table 2 briefly. Increase in the pollution cost forces the 
social planner to conserve the exhaustible resource for longer 
periods. This is true as long as 

2
0 0

* ( ) >  (an extra unit of the 

19 d = 0 corresponds to the model without pollution or the one analyzed in the 
previous section.

Figure 8: Combined energy profiles for d =0.6, d = 2, d = 2.6 and d = 3

Figure 9: Time of switch to backstop as function of pollution 
parameter d

Figure 10: Investment profiles for d = 0.6, d = 2, d = 3 and d = 6
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non-renewable resource stock adds to discounted lifetime net 
profits). Increase in the life of the exhaustible resource also 
causes current investment in the backstop to be worth less 
because of discounting. This is seen through a fall in l

1
0

*
( )  when 

d increases. Note that initial investment i*( )0  decreases as well. 
A rise in T or the time of switch to the backstop also entails an 
increase in the accumulated knowledge stock at the time of switch 
(through the dominance of the time effect as mentioned 
previously). But the results change significantly when d rises 
above its critical value ( . )d ≥ 2 57 20. The planner switches sooner 
to the backstop and the cost of pollution becomes so high that 
thisis done without completely exhausting the stock of the non-
renewable resource. We note again that 

1
0 0

* ( ) =  in these cases. 
r* ( )0 0=  falls because of the high pollution cost and as 
investment in the knowledge stock is valued more; this is 
reflected in a 

1
0 0

* ( ) =  rising as d increases.

In conclusion, we summarize how the relation between d and q 
affects the exhaustion of the initial exhaustible resource stock in 
s0 Figure 11. In Figure 11, d q=  along the diagonal s T( )  and 
represents amount of non-renewable resource stock left in the 
ground at the date of switch to the backstop T. In the upper triangle 
when d < q, there is complete exhaustion of the initial stock s0 
whereas for d q>  (lower triangle), three possible cases arise 
depending on the value of d given other parameters.

6. SUMMARY OF RESULTS AND FUTURE 
WORK

We model a continuum of identical firms producing a composite 
commodity from energy using an exhaustible resource and a perfect 
substitute backstop technology21. We analyze the time of switch 
from the exhaustible resource to the backstop for the equilibrium 

20 d = 2.57 represents the knife-edge case when λ
2
0 0

* ( ) =  and there is also a 
complete exhaustion of s0 at the time of switch.

21 Because of the exhaustible resource and the backstop being perfect 
substitutes, a firm uses either the exhaustible resource r or the backstop b 
at any time with an indeterminate mix of the two at one point when their 
marginal costs are equal.

and planner solutions22. We assume a zero cost of extraction for 
the non-renewable resource whereas the positive average cost of 
the backstop falls with knowledge accumulation. A zero cost of 
extraction not only makes the backstop initially uncompetitive 
with the exhaustible resource for use by a representative firm but 
also makes the model tractable; we employ complex numerical 
methods in Mathematica to solve the model completely which 
is one the main contributions of this work. Investment in the 
knowledge stock is thought of as R and D expenditures by a firm 
which reduces the future average backstop cost. This is similar to 
Gray and Grimaud (2010) who model R and D spillovers as being 
partial, but we differ in the respect that investments and the stock 
of knowledge are purely private from a firm’s point of view and 
the firm does not draw upon from a shared pool of technological 
knowledge.

The representative firm partially benefitting from its own 
knowledge accumulation gives rise to difference between the 
equilibrium and planner solutions. As the social planner fully 
internalizes the benefits of investing in the knowledge stock, 
investment is higher in the optimal solution compared to the 
equilibrium one every period. Introducing flow pollution to the 
model (Schou 2000), we find the results change considerably 
for the planner solution. With constant marginal costs for 
pollution, for a relatively high pollution cost (compared with 
the average backstop cost) the social planner switches sooner 
to the backstop and invests greater amounts in knowledge in the 
initial periods. The planner also leaves some of the exhaustible 
resource stock unexploited. This occurs because the shadow 
price of the exhaustible resource stock falls to zero (an additional 
unit of the stock of the non-renewable resource does not add to 
discounted lifetime net profits). For a relatively low pollution 
cost, implying a positive shadow price, the exhaustible resource 
is conserved for longer periods with lesser investments in 
knowledge each period.

Some plans for future research are to include extraction costs 
for the exhaustible resource (based on the cumulative amount 
extracted) and stock pollution. Stock pollution in the context of 
an atmospheric ceiling constraint has been modeled by Amigues 
et al. (2012) and Amigues and Moreaux (2013). In addition, 
introducing learning by doing (in reducing average backstop cost) 
would entail the knowledge accumulation function (like (7)) to 
first be convex and then concave. This might generate interesting 
possibilities such that larger firms (introducing firm heterogeneity) 
invest more in knowledge and switch sooner to the backstop. 
The “critical” knowledge stock23 where returns to investment 
change from increasing to diminishing may or may not coincide 
with the time of switch to the backstop. Finally, introducing 
correction mechanisms to encourage greater investment by firms 
in equilibrium (e.g. Acemoglu et al. (2012) introduce research 
subsidies to increase the productivity of the “clean” sector) is 
something we want to pursue in future.

22 Switching from exhaustible resources to a backstop has been analyzed by 
Hung and Quyen (1993), Tsur and Zemel (2003, 2005).

23 Boucekkine et al. (2003) call a critical knowledge stock A* when 
introducing a learning curve.

Figure 11: Relation between d and q and exhaustion of s0



Gupta: Dynamics of Switching from Polluting Resources to Green Technologies

International Journal of Energy Economics and Policy | Vol 5 • Issue 4 • 2015 1121

REFERENCES

Acemoglu, D., Aghion, P., Bursztyn, L., Hemous, D. (2012), The 
environment and directed technical change. American Economic 
Review, 102(1), 131-166.

Amigues, J.P., Lafforgue, G., Moreaux, M. (2012), IDEI Working Paper. 
Optimal Timing of Carbon Capture Policies Under Alternative CCS 
Cost Functions.

Amigues, J.P., Moreaux, M. (2013), IDEI Working Paper. Optimal Growth 
Under a Climate Constraint.

Boucekkine, R., Saglam, C., Vallée, T. (2003), Working Paper. Technology 
adoption under embodiment: A two-stage optimal control approach.

Boucekkine, R., Krawczyk, J., Vallée, T. (2011), Environmental quality 
versus economic performance: A dynamic game approach. Optimal 
Control Applications and Methods, 32(1), 29-46.

Boucekkine, R., Pommeret, A., Prieur, F. (2013a), Technological vs. 
ecological switch and the environmental Kuznets Curve. American 
Journal of Agricultural Economics, 95(2), 252-260.

Boucekkine, R., Pommeret, A., Prieur, F. (2013b), Optimal regime 
switching and threshold effects. Journal of Economic Dynamics and 
Control, 37(12), 2979-2997.

Chakravorty, U., Leach, A., Moreaux, M. (2011), Would hotelling kill the 
electric car? Journal of Environmental Economics and Management, 
61(3), 281-296.

Currie, J., Schmieder, J. (2008), Fetal Exposure to Toxic Releases and 
Infant Health. NBER Working Paper No, 14352.

Dasgupta, P., Heal, G.M. (1974), The optimal depletion of exhaustible 
resources. Review of Economic Studies, 41, 3-28.

Das Gupta, S. (2015), Dirty and clean technologies. Journal of Agricultural 
and Applied Economics, 47(1), 123-145.

Energy Information Administration. (2014), Annual Energy Outlook. 
Available from: http://www.eia.gov/forecasts/aeo.

Graff Zivin, S., Neidell, M. (2011), The Impact of Pollution On Worker 
Productivity. NBER Working Paper No, 17004.

Gray, E., Grimaud, A. (2010), TSE Working Paper. Scope of Innovations, 
Knowledge Spillovers and Growth.

Hartley, P., Medlock, III, K.B., Temzelides, T., Zhang, X. (2014), RISE 
Working Paper. Energy Sector Innovation and Growth.

Hung, N.M., Quyen, N.V. (1993), On R&D timing under uncertainty: 
The case of exhaustible resource substitution. Journal of Economic 
Dynamics & Control, 17(5-6), 971-991.

Schou, P. (2000), Polluting non-renewable resources and growth. 
Environmental and Resource Economics, 16(2), 211-227.

Stiglitz, J. (1974a), Growth with exhaustible natural resources: Efficient 
and optimal growth paths. Review of Economic Studies, 41, 123-137.

Stiglitz, J. (1974b), Growth with exhaustible natural resources: The 
competitive economy. Review of Economic Studies, 41, 139-152.

Tsur, Y., Zemel, A. (2003), Optimal transition to backstop substitutes for 
nonrenewable resources. Journal of Economic Dynamics & Control, 
27(4), 551-572.

Tsur, Y., Zemel, A. (2005), Scarcity, growth and R&D. Journal of 
Environmental Economics and Management, 49(3), 484-499.



Gupta: Dynamics of Switching from Polluting Resources to Green Technologies

International Journal of Energy Economics and Policy | Vol 5 • Issue 4 • 20151122

APPENDIX

We use the software Mathematica to get numerical solutions to 
the following parts of the model. Further details are available 
upon request.

Switching Time and Solutions for d = 0

Exhaustion Condition
We find the time T at which the economy switches from the first 
phase ( , )r b> =0 0  to the second ( , )r b= >0 0  by combining 
the first-order conditions and constraints1. We cannot find this in 
closed form however, so we must use numerical methods. Since 
the stock of the non-renewable resource is fully exhausted at the 
time of switch (in the case of no flow pollution), using (3) and 
(25) we write

0
0

T

r t dt s∫ ( ) =  (45)

which implies, 
0 2

1

0

1

0

T

te
dt s∫

−
( )







 =α

λ ρ

α

 (46)

Call rT  the extraction rate at the time of switch T. Assuming energy 
use is continuous, we use (27) to write r bT T= : The rate of 
extraction of the exhaustible resource is the same as the rate of 
backstop production at the time of the switch. Suppose we know 
rT . Given s0 , Equations (25), (27) and (46) allow us to find T and 
r(0) as functions of rT and s0. We get

T ln
r

s m r
T

T= +




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
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≡1
0

ρ
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α
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( )  (47)

r r sT0 0( ) = +
ρ
α

 (48)

From (27), we write rTas a function of the stock of knowledge at T as

r b
q a
n

h rT T

T

T= =
−

+


















≡
1

1





( )  (49)

Therefore if nT  was given, we could find rT  and given our data 
on s0, T and r( )0  could be obtained. From (47) and (49) we get

T m h n w nT T= ( )  = ( )  (50)

and w nT
' ( ) < 0 . This would be important in what follows.

Knowledge Condition and Solution
To find the key value of nT , we must work our way backwards. 
That is, we begin in the second phase when r b= >0 0, . Combine 
(18) and (27) to get

1 We compute the model for the equilibrium solution. The social planner 
solution can be found by substituting β = 1 in the following equations.

λ ρλ β α
α

1 1 2

1

1.

= − −

+

















a
n q a

n

 (51)

From equations (51) and (19), we plot the phase plane after the 
switch to backstop in Appendix Figure 1 for the equilibrium 
solution. The downward sloping curve corresponds to the 

1
0

.

=  
locus and the n = 0  locus coincides with the horizontal axis. We 
see the saddle point would be given by ( , )n →∞ →λ

1
0 . The 

stable arm or the “policy function” (shaded green) that satisfies 
transversality is found by numerical methods in Mathematica. It 
asymptotes to the horizontal axis in the limit and 1n  converges 
to zero (a constant) when t → ∞ . We represent the policy function 
by


1
= p n( )  (52)

The slope of the policy function in the second phase is found by 
taking the ratio of 1

.

n
 from (19) and (51).

In the first phase when r b> =0 0,  we combine (19) and (26) to 
get

λ λ ρ
1 1

0t e t( ) = ( )  (53)

n t e nt( ) = ( )
−( ) +λ

ρ
ρ1

0

0

2
1  (54)

for any t given some initial 
1
0( ) . Eliminating time from equation 

(54), we get 

λ λ ρ1 1 0 2
0

= + −( ) ( )n n  (55)

given the initial knowledge stock n0 . This is the policy function 
in the first phase. It is upward sloping and must intersect p n( )  at 
a finite value of n : In other words, at the knowledge stock nT  at 
the time of switch to the backstop. Combining the policy functions 
for the first and second phases, we plot the whole policy function 
in Appendix Figure 2 for any given n0  and an optimal choice of 

1
0( ) . In Appendix Figure 2, the path of 1  has a kink 

corresponding to the knowledge stock and its shadow price at the 
time of switch to the backstop 1( ˆ, ˆ )n  . It must be noted that the 
investment profile in Appendix Figure 2 is derived from Appendix 
Figure 2 using (19).

Now given a unique 
1
0

*
( ) , we can relate nT  and x ≡ 

1
0( ) . 

Setting different values of x, we equate (52) and (55) to get an 
interpolating function in Mathematica in the form

n f xT = ( )  (56)

From Appendix Figure 2, we can see that f x'( ) < 0 . From (54) 
we get
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




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2 1
0


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with z x'( ) < 0 . On the other hand, from (50) and (56), we find

T w f x g x= ( )( ) ≡ ( )  (58)

with g x'( ) > 0 . We plot the functions z x( )  and g(x)  in Appendix 
Figure 3. From x*and T*, we get nT

*  from (56) and then r bT T
* *≡  

from (49). We then obtain r* ( )0  from (48) going backwards and 

2
0

*
( )  by substituting r* ( )0  in (25). From (26), we find 

x TT
* *

( )≡ 
1

. Finally, solutions for i* ( )0  and i T* ( )  are found using 
x* and xT

*  in (19). As an exposition, we plot the investment profiles 
over time for the planner (S.P.) and equilibrium (C.E.) solutions 
in Appendix Figure 4. In Appendix Figure 4, the points of kink 
represent the time of switch to the backstop and shows that the 
planner switches sooner compared to a firm in equilibrium.

Switching Time and Solutions for d > 0

Here the method of obtaining solutions remains largely the same as 
in the previous subsection when the unit pollution cost was zero2. We 

2 We again compute the model for the equilibrium solution. For the planner 
solution use β = 1.

Appendix Figure 1: Phase plane when r = 0, b > 0 in equilibrium

Appendix Figure 2: Policy function ʎ1 in equilibrium

Appendix Figure 3:  Profiles of T as a function of l1(0) in 
equilibrium: uu denotes l1(0)

first assume that the non-renewable resource stock is fully exhausted 
at the time of switch. We once again get T and r( )0  (or 2 0( ) ) as a 
function of rT  or the rate of extraction at T. Using the continuity 
property from (49), we relate rT  to nT  or the stock of knowledge at 
the time when a firm switches from using the exhaustible resource to 
the backstop. Note that in this case, a key relation would be between 
T and 

2
0( ) . Since we cannot get these relations in closed form, we 

resort to numerical methods. Now modifying (44) we get

λ ρ
2
0( ) = + −







−q a

n
d e

T

T  (59)

We replace 
2
0( )  with T from the relation above and replace nT  

with x ≡ 
1
0( )  from (56). We then get an interpolating function 

in Mathematica similar to T g x= ( ) with g x'( ) > 0. Along with 
(57), these equations give us T* and x*. Then i* ( )0  is found from 
(19) using 

1
0

*
( )  .

We repeat the above process for various values of the unit pollution 
cost d. Using the interpolating function between T and 

2
0( )  found 

above, we find 
2
0

*
( )  keeps falling with increases in d (Table 2): 

Appendix Figure 4: Time paths if investment for the planner and 
equilibrium solutions



Gupta: Dynamics of Switching from Polluting Resources to Green Technologies

International Journal of Energy Economics and Policy | Vol 5 • Issue 4 • 20151124

At d = 2 57. , 
2
0 0

* ( ) ≈  and 
2
0 0

* ( ) <  when d > 2 57. . To satisfy 

optimality, we thus assume 
2
0 0

* ( ) =  for d ≥ 2 57. . The path of 

exhaustible resource use either falls (for 
2
0 0

* ( ) > ) or remains 

constant (for 
2
0 0

* ( ) = ).


