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ABSTRACT

The stock price plays an important role in a financial market. In this research, the natural relationship of the daily stock prices of two energy companies, 
namely the daily stock price of ADRO and PTBA, from January 2018 to December 2022 will be discussed. The purpose of this research is to obtain the 
best model that fits the data of the daily share price of the two companies, ADRO and PTBA. The analysis used to model the data is the multivariate 
time series method. From the results of the analysis, it was found that the best model is VAR(3)-CCC-GARCH)(1,1). Based on this VAR(3)-CCC-
GARCH(1,1) model, further analysis: impulse response function (IRF), granger causality, the proportion of prediction error covariances, and forecasting 
for the next 30 days are discussed. The granger causality test found that the ADRO and PTBA have mutual granger causality (bidirectional). The 
results of the IRF analysis explain: If there is a shock of one standard deviation in ADRO, ADRO and PTBA have a response. ADRO’s response is 
positive for the next 24 days with a downward trend, while PTBA’s response is positive with an upward trend; If there is a shock of one standard 
deviation in PTBA, PTBA itself and ADRO respond. ADRO’s response is negative and weak and has a downward trend in the next 24 days, while 
PTBA’s response is quite large and positive with a downward trend. From the forecasting results for the next 30 days (period), ADRO’s closing price 
has decreased, and PTBA data has a downward trend for the next 30 days.

Keywords: VAR(p) model, CCC GARC(r,s) Model, Impulse Response Function, Granger-Causality, Variance Decomposition, Forecasting 
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1. INTRODUCTION

Autoregressive Conditional Heteroscedasticity (ARCH) modeling 
was first developed by Engle (1982), and the ARCH modeling 
concept continues to develop both in theory and in its application, 
especially research in the field of financial econometrics (Bauwens 
et al., 2012). With ARCH modeling, volatility modeling in the 

financial sector is developing rapidly (Bauwens et al., 2012). 
The generalization of the ARCH model was later developed by 
Bollerslev (1986), better known as the Generalized Autoregressive 
Conditional Heteroscedasticity (GARCH) model. In GARCH 
modeling, it is explained that the current variance is a function 
of the residual and past variance. Since 1986 the GARCH model 
was introduced by Bollerslev (1986); the model has become 
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extremely popular among academicians and practitioners. The 
GARCH models have led to fundamental changes in finance 
studies (Franco and Zakoian, 2016). With the development of the 
univariate GARCH model and its application to time series data, 
the expansion of this model’s application to multivariate time 
series cases is also growing rapidly. Multivariate time series data 
modeling the cross-correlation between variables based on the 
concept of time lag are discussed (Hamilton, 1994; Wei, 2006; 
2014; Lutkepohl, 2005; 2020; Tsay, 2010; 2014; Bauwens et al., 
2012; Basu et al., 2019; Hamzah et al., 2020). The application 
of statistical modeling for multivariate time series data has 
encouraged research in the fields of finance, business, economics, 
and sciences (Lutkepohl, 2005; 2020; Tsay, 2014; Chamalwa 
and Bakari, 2016; Zhang et al., 2016; Keng et al., 2017; Bulteel, 
2018; Dumitrescu et al., 2019). Kraft and Engle (1982) and Engle 
et al. (1984) were the first researchers to discuss the application 
of GARCH to multivariate time series data. They applied it to 
inflation models in the USA so that conditional covariance adapts 
over time. Bollerslev et al. (1988) applied multivariate data in 
the financial field, which expanded the concepts of ARCH and 
GARCH in the field of multivariate time series. The problem in 
ARCH and GARCH modeling applications in multivariate time 
series is the number of parameters involved. The next problem is 
estimating the parameters for multivariate time series with large 
dimensions.

Several researchers then developed several methods to overcome 
this. Engle and Kroner (1995) developed the BEKK-GARCH 
method. Engle et al. (1990) developed the factor model, Bollerslev 
(1990) developed the CCC-GARCH method, and Tse and Tsui 
(2002) developed the DCC-GARCH Dynamic Correlation model. 
Many studies have been conducted in the last four decades using 
the GARCH model. Lin et al. (2020) discussed forecasting crude 
oil price volatility using the Hidden Markov Exponential GARCH 
(HM-GARCH) model. In their research, Lin et al. (2020) compared 
the uni-regime GARCH model, the GARCH model with the 
Hidden Markov (HM) Switching regime in its ability to forecast 
in the West Texas Intermediate (WTI) crude oil market and the 
HM-GARCH model perform better than uni-regime GARCH 
model. Herera et al. (2018) discussed forecasting crude oil price 
volatility with the GARCH(1,1) model. Abounoori et al. (2015) 
used the GARCH model and discussed its ability to forecast the 
volatility of the Tehran Stock Exchange. Cheong (2009) in his 
study discussed the volatility of two major crude oil markets, 
namely the WTI and Europe Brent. In his analysis, Cheong (2009) 
uses the ARCH model to explain forms of volatility such as 
clustering, asymmetric impact, and long memory volatility. Crifter 
(2013) discusses electricity price behavior in the Nordic Electric 
power market using the HM-GARCH model. Crifter’s research 
results (2013) explain that with the HM-GARCH model, the price 
of electric volatility is high and very dependent on the regime. 
Usman et al. (2022) discussed the energy companies variables for 
the cases of several energy companies in Qatar, namely the weekly 
stock price of Qatar Fuel Company (QFLS), Qatar Electricity and 
Water Company, and Qatar Gas Transport Company using the 
VAR(3)-GARCH(1,1) model. Using this model, IRF analysis, 
granger causality, and forecasting were carried out for the three 
energy companies. Nairobi et al. (2020) discuss a dynamic 

model for export oil and gas and non-oil and gas data for cases 
in Indonesia using ARMA(2,1)-GARCH(1,1) modeling, and this 
model is used for forecasting the next 12 months. Warsono et al. 
(2019) discussed export coal and oil data for cases in Indonesia 
using vector autoregressive moving average modeling.

In this study, daily stock price data of ADRO and PTBA from 
January 2018 to December 2022 will be analyzed using a 
multivariate time series analysis approach to get the best model 
that fits the data. Based on this objective, the VAR(p)-CCC-
GARCH(r,s) model was developed to explain the relationship 
between ADRO’s and PTBA’s daily share price data. Methods 
for finding the best model, parameter estimation and testing, 
model checking, and vector time series forecasting are also 
discussed. Based on the best model, IRF analysis, granger 
causality, proportion prediction error covariance, and forecasting 
are discussed.

2. STATISTICAL MODELING

Untransformed data time series of economic or finance are often 
characterized by a trend (Burke and Hunter, 2017). One of the 
basic assumptions in time series analysis is the property of 
stationarity. Stationarity is central in time series analysis because 
it replaces naturally independent hypotheses and identically 
distributed observations in standard statistical analysis. A process 
{Xt} is called second-order stationarity if (i) EX t Zt

2 � � � �, ;  
(ii) EX m t Z� � �, ;  and (iii) Cov X X h t h Zt t h X( , ) ( ), , .� � � ��  
(Franco and Zakoian, 2010; Wei, 2019). The study modeling the 
relationship simultaneously among variables share prices two big 
energy companies, ADRO and PTBA of Indonesia, are the 
interested variables to be analyzed. The vector time series for the 
said variables can be written as follows:

X
ADRO
PTBAt

t

t

�
�

�
�

�

�
�  (1)

Where ADROt is the daily share price of ADRO at time t, and 
PTBAt is the daily share price of PTBA at time t. In this study, 
to check or to test the stationarity of the data time series will be 
checked by the plot of the data and by the Augmented Dickey-
Fuller test (ADF test) or unit root test (Wei, 2006; Tsay, 2010). To 
check the stationarity of the data time series by using the ADF test 
of a parameter can be conducted by the following model:

� �X X X et t t
i

m

t t� � � � ��
�

��� � ��
1

1

1i
 (2)

The null and the alternative hypotheses are as follows:

H0: δ = 0 and H1: δ < 0

and the statistical test, to test the null hypothesis, we use test-τ 
(Tau-test) or Dickey-Fuller test as follows:

�
�

�

�
S

 (3)

null hypothesis is rejected if the P ≤ α, for α = 0.05 (Brockwell 
and Davis, 1991; 2002; Warsono, et al., 2019a, 2019b, 2020).
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2.1. The Test for Autocorrelation and Cross-
Correlation Matrix
The Box-Pierce Q statistic to test the autocorrelation in the 
univariate case is defined as follows:

2

1=
= ∑

p

j
j

Q N r  (4)

Q is based on the squares of the first p autocorrelations coefficient 
of the Ordinary Least Squares (OLS) residuals and

1

2

1

−
= +

=

=
∑

∑
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t t j
t j

j N

t
t

e e
r

e
 (5)

Under the null hypothesis of zero autocorrelation for the residuals 
Q will have asymptotically χ2 distribution with the degree of 
freedom equal to p minus the number of parameters estimated 
in the AR model. The test for cross-correlation for the case of 
multivariate time series has been developed by Hosking (1980, 
1981) and Li and McLeod (1981) as an extension of the univariate 
autocorrelation case. The null hypothesis for multivariate time 
series is as follows:

Ho k: ...� � �
1 2

0� � � � ,

with the alternative

Ha i ki: { , ,..., }� � �0 1 2for some .

The test statistic is as follows:

2 1 1
0 0

1

1 ˆ ˆ ˆ ˆ( ) − −

=

 ′= Γ Γ Γ Γ −∑
k

m s s
s

Q k N tr
N s

, (6)

where N is the sample size, m is the dimension of Xt, and tr(A) is 
a trace of a matrix A, and the cross-covariance matrix Гk can be 
estimated by

1

1ˆ ( )( ) , 0.−
= +

′Γ = − − >∑
N

k t t k
t k

X X X X k
N  (7)

where X
N

Xt
t

N

�
�
�1

1
 is the vector sample mean. The cross-

correlation ρk is estimated by:

1 1ˆ ˆˆˆ ˆ[ ( )]ρ ρ − −= = Γk ij kk D D , (8)

where k ≥ 0 and D̂  is m×m the matrix diagonal from the sample 
standard deviation from the series component.

Under the null hypothesis, Qm (k) asymptotically has a Chi-
square distribution with degrees of freedom m2k. Reject the null 

hypothesis if the P < 0.05, which means that the test confirms the 
interdependence of the time series at a significance level of 5% 
(Lutkepohl, 2005; Tsay, 2010, Wei, 2019). If the null hypothesis 
is rejected, the class of vector autoregressive model should be 
involved in building a multivariate time series data study.

2.2. Vector Autoregressive (VAR) Model
If the time series modeling involves more than one variable, 
for example, if m time series variables are to be analyzed 
simultaneously, then the time series data can be presented as a 
vector time series. Suppose Xt is m-dimensional vector time series, 
then the vector autoregressive model with order p, VAR(p), and 
can be written as follows:

X X Xt t p t p t� � � � �� �� �
0 1 1

� �...  (9)

or

� p t tB X( ) � �� �
0

 (10)

where εt is vector white noise with mean vector zero and covariance 
matrix E t t( )� � � �� , � � �p p

pB I B B( ) ...� � � �
1

 with Bi Xt = Xt−i 
(Wei, 2019). The model (9) will be stationary if the characteristic 
values of � �p p

pI � � ��1
1

� �... =0 are all lie within the unit 
circle (Hamilton, 1994; Tsay, 2014; Wei, 2019). The VAR(p) model 
treats all the variables symmetrically; in the left side, one vector 
contains more than one variable, and on the right side, there is a 
lag value (lagged value) of the dependent variable as a representation 
of the autoregressive property in the model.

2.3. CCC-GARCH(r,s)
The multivariate GARCH model can be defined by specifying 
their first two conditional moments. An Rm-valued GARCH process 
(ϵt), with � � �t t kt�� ��1

, ....,  have to satisfy, ∀t∈Z,

E u tt u( | , ) ,� � � � 0  and

Var u t E u t Ht u t t u t( | , ) ( | , )� � � � �� � � � �

The multivariate GARCH process is based on the following 
equation:

� �t t tH� 1 2/  (11)

where (ηt) is a sequence of iid Rm-valued variables with zero mean 
and identity covariance matrix. The matrix Ht

1 2/ can be symmetric 
and positive definite, but it can also be triangular, with positive 
diagonal elements (Harville, 1997, theorem 14.5.11). If Ht

1 2/ is 
chosen to be lower triangular, the first component of εt only 
depends on the first component of ηt. When m = 2, we can set
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where η1t and hij,t denote the generic elements of ηt and Ht (Franco 
and Zakoian, 2010). Consider a multivariate GARCH process of 
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the form (11), all the past information on εkt, involving all the 
variables εl,t−1, is summarized in the variable hkk,t, with E h Ekk t kt,

.� � 2  

Let � �kt kk t kth� �
,

/1 2  and the variable ηkt are generally correlated, so 
l e t  t h e  co r r e l a t i on  ma t r i x  R Var kt kl� �( )� � ,  w he re 
� � � �t t t mt� �( , , ... , ) .

1 2
 The conditional variance of

� �t t t mm t tdiag h h h� ( , ,..., )
,

/
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/

,

/

11

1 2

22

1 2 1 2 .
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In multivariate cases, we can define as follows:
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A process (εt) is called Constant Conditional Correlation (CCC)-
GARCH(r,s) if it satisfies
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where R is correlation matrix, α is a m×1 vector with positive 
coefficients, and Ai and Bj are m×m matrices with nonnegative 
coefficients (Franco and Zakoian, 2010).

2.4. Normality Test of Residuals
Some methods are available to check the normality of the errors 
(residuals). Some methods are commonly used to check whether 
the errors (residuals) are normally distributed: (1) check the 
histogram of the residuals; (2) check the Q-Q plot of the data or 
error (residuals); and (3) use the statistical test, the Jarque-Bera 
(JB) test, with the null hypothesis that the data are normally 
distributed (Brockwell and Davis, 2002; Wei, 2006; Tsay, 2010). 
The JB test is calculated as follows:

JB N S K
� �

��

�
�

�

�
�

6

3

4

2

2
( ) , (15)

where N is the sample size, S is the expected skewness, and K is 
the expected excess kurtosis.

2.5. Granger Causality
In multivariate time series analysis, the interesting one is that we 
can ask whether there is a causal effect between the variables 
involved in the VAR(p) model. From equation (10), suppose we 
partition the vector Xt into two components X X Xt t t� � �� ��1 2

,  so 
that model (10) can be written as follows:
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 (16)

If Ф12=B=0 equation (16) can be written as follows:

�
� �
11 1 1 1

22 2 2 21 1 2

B X
B X B X

t t

t t t

( )

( ) ( )
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� �
� �

 (17)

Equation (17) can be interpreted as follows: the future values of 
X1t are affected by its past values, and the future values of X2t are 
affected not only by its past values but also by the past values of 
X1t. This concept is known as the Granger causality (Wei, 2019).

2.6. Impulse Response Function (IRF)
One of the interesting analyses in dynamic modeling is to discuss 
the IRF; namely, we are interested in a process with white noise 
with orthogonal components, as this allows us to analyse how a 
shock on a variable in the model propagates over time. Wei (2006) 
and Hamilton (1994) stated that the IRF is an analytical technique 
used to analyse a response of a variable due to shock in another 
variable. Wei (2006) stated that the VAR model could be written 
in vector MA (∞) as follows:

X µ µ µ µt t t t� � � �� �� �
1 1 2 2

 (18)

Thus, the matrix is interpreted as follows:

�
�

��Xt s
t

s�
��

The element of the ith row and jth column indicates the consequence 
of the increase of one unit in the innovation of variable j at 
time t (μjt) for i variable at time t + s (Xi, t + s) and fixed all other 
innovations. If the element of μt changed by δ1, at the same time, 
the second element will change by δ2,…, and the nth element will 
change by δn, then the common effect from all of these changes 
on the vector Xt + s will become
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X
u

X
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X
ut s

t s

t

t s

t

t s

nt
n s�

� � ��
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1

2

2
� � � �  (19)

The plot of the ith row and jth column of Ψs as a function of s is 
called IRF.

2.7. Forecasting l-Steps Ahead
Forecasting is one of the important analyses in multivariate time 
series (Tsay, 2010). After the diagnostic model is done and the 
model is adequate, then we can use the model for forecasting future 
values. Let we are interested in predicting the l-step ahead Xh+1 
based on the information available at time t = h. Such prediction 
is called the l-step ahead forecast of the series at the time index 
h. Let Fh is the information available at time h. For the VAR(p) 
model, the one-step ahead forecast is:

X E X F Xh h h i
i

p

h i( ) ( | )1
1 0

1

1
� � ��

�
� ��� � .

The two-step ahead forecast is:

X E X F E X F Xh h h h h i
i

p

h i( ) ( | ) ( | )2
2 0 1 1

2

1
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�
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In general, for l-step ahead forecast is:

X l E X F X l ih h l h i
i

p

h( ) ( | ) ( ),� � � ��
�
��

0

1

�  (20)

Where Xh(l) = Xh+1 (Tsay, 2014; Wei, 2019).

2.8. Proportion of Prediction Error Covariance
The proportion of predicted error covariance will be used to 
explain the contribution of other variables to a variable in 
forecasting for the next several periods ahead, and the contribution 
of other variables to the long-term forecasting results of a variable 
will also be evaluated (Lutkepohl, 2005; Wei, 2006; 2019; Florens, 
2007; Tsay, 2014).

3. RESULTS AND DISCUSSION

The data used in this study are daily stock price data for some 
energy companies in Indonesia, namely ADRO and PTBA data 
from January 2018 to December 2022. Adaro Energy Indonesia 
Tbk (ADRO) was established under PT Padang Karunia on 
28 July 2004, and began operating as a commercial in July 2005. 
PT. Adaro Energy Indonesia Tbk (ADRO) is an integrated coal 
mining company based in Indonesia. ADRO and its subsidiaries are 
engaged in coal mining, mining contractor services, coal trading, 
coal logistics and power generation activities, and infrastructure 
(PT. Adaro Energy Indonesia Tbk, 2023). PT. Bukit Asam Tbk 
(PTBA) was established on March 2, 1981. The controlling 
shareholder of Bukit Asam Tbk is the Government of the Republic 
of Indonesia, owning five Preferred Shares (Dwiwarna Series 
A Shares) and indirect control through PT Indonesia Asahan 
Aluminum (Persero). In 1993, Bukit Asam Tbk was appointed by 
the Government of Indonesia to develop a Briquette Production 
Unit. Based on the Company’s Articles of Association, the scope of 
activities of PTBA and its subsidiaries (Group) is to engage in the 
coal mining industry and related activities, including exploration, 
exploitation, processing, refining, transportation and trading, 
management of special coal jetty facilities both for own and other 
parties’ needs, operation of steam power plants both for their own 
needs and for other parties’ needs and providing consulting and 
engineering services in fields related to the coal mining industry 
and its processed products, plantation development sector, and 
health service sector (PT. Bukit Asam Tbk, 2022).

Figure 1 shows ADRO and PTBA plot data. The plot shows 
that the daily share price data of ADRO and PTBA stock prices 
fluctuate and are not stationary; This is also shown in Figure 2a 
and b, where the data graphs are not stationary and fluctuate. 
Figure 2a and b show the Autocorrelation Function (ACF) graphs 
where both ADRO and PTBA data show ACF decaying very 
slowly; this strengthens the notion that ADRO and PTBA data 
are nonstationary. The ADF test also shows that the data is not 
stationary. A differencing process will be carried out to meet the 
assumptions of stationary data. Data Table 1 knows that the data 
after differentiation meets the stationary assumption.

After differencing, using the ADF test with the null hypothesis that 
the data are nonstationary, the results show the null hypotheses 
are rejected, so the ADRO and PTBA data fulfill the stationary 

Figure 1: Plot data ADRO and PTBA from January 2018 to  
December 2022

assumption (Table 1). Checking the autocorrelation (Table 2) and 
the results of the Box-Pierce test show that the ADRO and PTBA 
data have autocorrelation at the residuals up to lag 24; this shows 
that ADRO and PTBA data modeling requires modeling that 
involves autoregressive. Based on the cross-correlation analysis 
and the schematic representation cross-correlation results, it shows 
a significant cross-correlation (Tables 3 and 4). Thus, multivariate 
time series modeling will involve autoregressive vector modeling 
(VAR).

Further examination will examine the effect of Autoregressive 
Conditional Heteroscedasticity (ARCH). Using the Lagrange 
Multiplier (LM) test, Table 5 shows that ADRO and PTBA 
variables have an ARCH effect. Where the results of the LM test 
up to lag-6 are significant with P < 0.0001. Thus, based on the 
results of the LM test and indicating the existence of the ARCH 
effect, the ADRO and PTBA data modeling that will be built will 
involve autoregressive modeling (VAR) and involve GARCH 
modeling for the residuals.

Based on Table 6, the minimum AICC value is at lag-3, which 
is 16.4050. However, the difference in AICC values at lag-2, 
lag-3, and lag-4 is not too big. To determine the best model, this 
research will compare three models, namely: VAR(2)-CCC-
GARCH(1,1), VAR(3)-CCC-GARCH(1,1), and VAR(4)- CCC-
GARCH(1,1). From the results of a comparison of the three 
models from Table 7, the smallest AICC value is in the VAR(3)-
CCC-GARCH(1.1) model, which is 16.4287. So, the best model 
chosen is VAR(3)- CCC-GARCH(1,1) for further study.

3.1. VAR(3)- CCC GARCH(1,1) Model
From the results of analysis, the estimate model of VAR(3)-CCC-
GARCH(1,1) is:
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Figure 2: Trend and Correlation analysis for (a) ADRO, (b) PTBA

Table 1: Dickey-Fuller unit roots test before and after differencing (d=1)
Variable Type Before differencing After differencing (d=1)

Rho P-value Tau P-value Rho P-value Tau P-value
ADRO Zero Mean −0.00 0.6825 −0.00 0.6824 −931.77 0.0001 −21.59 <0.0001

Single Mean −2.67 0.6972 −0.88 0.7957 −932.00 0.0001 −21.58 <0.0001
Trend −4.33 0.8661 −1.40 0.8593 −947.09 0.0001 −21.75 <0.0001

PTBA Zero Mean −0.08 0.6656 −0.09 0.6545 −1151.7 0.0001 −23.98 <0.0001
Single Mean −4.69 0.4655 −1.40 0.5843 −1152.0 0.0001 −23.97 <0.0001
Trend −4.07 0.8821 −1.09 0.9297 −1155.3 0.0001 −23.99 <0.0001

Table 2: Autocorrelation for white noise
Variable To lag Chi-square DF P-value Autocorrelations
ADRO 6 6020.17 6 <0.0001 0.992 0.983 0.973 0.964 0.954 0.945

12 9999.99 12 <0.0001 0.936 0.927 0.917 0.907 0.897 0.887
18 9999.99 18 <0.0001 0.877 0.866 0.856 0.845 0.836 0.828
24 9999.99 24 <0.0001 0.821 0.813 0.806 0.799 0.792 0.785

PTBA 6 6148.81 6 <0.0001 0.994 0.988 0.982 0.976 0.970 0.964
12 9999.99 12 <0.0001 0.958 0.952 0.947 0.941 0.936 0.931
18 9999.99 18 <0.0001 0.927 0.922 0.917 0.912 0.907 0.902
24 9999.99 24 <0.0001 0.897 0.892 0.887 0.882 0.878 0.873

Table 3: Cross correlations of dependent series up to lag-13.
Lag Variable ADRO PTBA Lag Variable ADRO PTBA
0 ADRO 1.0000 0.4874 7 ADRO 0.9356 0.4844

PTBA 0.4874 1.0000 PTBA 0.4291 0.9578
1 ADRO 0.9915 0.4871 8 ADRO 0.9266 0.4841

PTBA 0.4792 0.9939 PTBA 0.4210 0.9523
2 ADRO 0.9830 0.4870 9 ADRO 0.9168 0.4829

PTBA 0.4705 0.9876 PTBA 0.4124 0.9467
3 ADRO 0.9734 0.4862 10 ADRO 0.9074 0.4823

PTBA 0.4620 0.9818 PTBA 0.4038 0.9412
4 ADRO 0.9637 0.4855 11 ADRO 0.8974 0.4815

PTBA 0.4534 0.9758 PTBA 0.3952 0.9363
5 ADRO 0.9541 0.4850 12 ADRO 0.8869 0.4802

PTBA 0.4454 0.9698 PTBA 0.3867 0.9313
6 ADRO 0.9449 0.4848 13 ADRO 0.8765 0.4790

PTBA 0.4373 0.9638 PTBA 0.3786 0.9267
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and the estimate of CCC-GARCH(1,1) (Table 9) is:
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From the results of the analysis of Table 8 and Figure 3, it 
shows that ADROt-1 is significantly influenced by information 
on ADROt-1, namely information on the previous day, and 
PTBAt-1, PTBAt-2, and PTBAt-3, which are influenced by 
PTBA information on 1 day, 2 days, and 3 days before with 
a significance level of P-values 0.0165, 0.0006, and 0.0273, 
respectively. PTBAt was significantly influenced by PTBAt−1, 
PTBAt−2, and PTBAt−3 information, which was influenced by 
PTBA information 1 day, 2 days, and 3 days before, with a 
significance level of P-values 0.0001, 0.0826, and 0.0311, 
respectively.

3.2. Diagnostic Model
The results of the univariate model test for ADRO and PTBA 
data (Table 10) show significant results with P < 0.0001 and 
< 0.0001, respectively. Table 10 also shows the R-square values 
for the univariate ADRO and PTBA models, respectively 0.9913 
and 0.9899; this means that the univariate model for ADRO with 
R-square = 0.9913 means the model can explain the variation of 
ADRO values by 99.13%; and the univariate model for PTBA 
with R-square = 0.9899 means that the model can explain the 
variation of PTBA values by 98.99%. From the normality results 

a b
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Table 5: Test for ARCH effect
Variable Order Q P-value LM P-value
ADRO 1 1022.5272 <0.0001 1022.9432 <0.0001

2 2006.2309 <0.0001 1022.9706 <0.0001
3 2937.1623 <0.0001 1024.2396 <0.0001
4 3819.9773 <0.0001 1024.2658 <0.0001
5 4656.2125 <0.0001 1024.2671 <0.0001
6 5451.6160 <0.0001 1024.3239 <0.0001

PTBA 1 991.4214 <0.0001 1004.9871 <0.0001
2 1906.6543 <0.0001 1005.1520 <0.0001
3 2754.2083 <0.0001 1005.3062 <0.0001
4 3535.1813 <0.0001 1005.5910 <0.0001
5 4261.8075 <0.0001 1005.5956 <0.0001
6 4939.2588 <0.0001 1005.6089 <0.0001

Table 6: Minimum information criterion based on AICC
Lag AR0 AR1 AR2 AR3 AR4 AR5
AICC 25.7334 16.4073 16.4097 16.4050 16.4079 16.4119

PTBAt-2

ADROt PTBAt

ADROt-1 PTBAt-1

PTBAt-3

Figure 3: The variables that have significant effect on ADROt, and 
PTBAt based on the results of test of the parameters in Table 8

using the Jarque–Bera (JB) test with the null hypothesis that the 
residuals are normally distributed, rejected for the ADRO and 
PTBA data with P-values <0.0001 and <0.0001 respectively, 
which means the residuals are not normally distributed. However, 
Figure 4 shows that the residual distribution is close to the normal 
distribution for ADRO residuals (Figure 4a) and close to the 
normal distribution for PTBA residuals (Figure 4b). Table 11 
also shows the ARCH effect for the ADRO and PTBA variables 
with P < 0.0001 and 0.0204, respectively. So involving the 
GARCH model for residuals is appropriate (Hamilton, 1994; 
Tsay, 2010; Wei, 2019). Table 12 shows the modulus values 
for the root characteristic polynomials VAR, indicating that the 
VAR(3)-CCC-GARCH(1,1) model is stable (Lutkepohl, 2005; 
Tsay, 2014).

3.3. Granger Causality Wald Test
From the results of Wald’s granger causality test (Table 13), test 
1 and test 2 are significant, with P-values 0.0088 and 0.0275, 
respectively. Granger causality test results are presented in 
Figure 5. The results from Table 13 and Figure 5 are interpreted 
as follows: Test 1 is significant, which means that ADRO is not 
only influenced by itself but also influenced by past information 
from PTBA; Test 2 is significant, which means that PTBA is not 
only influenced by itself but also influenced by past information 
from ADRO.

3.4. Impulse Response Function
The IRF explains how the response of a variable if there is a 
change in a variable (shock) in standard deviation units. Figure 6a 
and Table 14 show what happens if a one standard deviation shock 
occurs in ADRO. Figure 6a illustrates the response changes in 
ADRO itself. ADRO’s response if a shock occurs to ADRO, 
the response is positive, above 0.80 standard deviations with a 
downward trend until day 24. The response and standard deviation 
for the first 10 days can be seen in Table 14. Figure 6a illustrates 
changes in response to PTBA if there is a one standard deviation 
shock in ADRO. PTBA’s response if a shock occurs to ADRO, 
the response is positive and significant and ranges above 0.1000 
up to an upward trend up to day 24. The response and standard 
deviation for the first 10 days can be seen in Table 14. Figure 6b 
and Table 15 show how it affects if there is a shock of one standard 
deviation at PTBA. Figure 6b illustrates changes in response to 
ADRO and PTBA. The ADRO response if a shock occurs at 
PTBA, the response is negative below zero in standard deviation 
units with a downward trend up to day 24. The response and 
standard deviation for the first 10 days can be seen in Table 15. 
Figure 6b illustrates changes in response to PTBA if there is a 
one standard deviation shock on PTBA. PTBA’s response if a 
shock occurs to PTBA, the response is positive and significant 
and ranges above 0.8000 with a downward trend up to day 24. 
The response and its standard deviation for the first 10 days can 
be seen in Table 15.

3.5. Forecasting and Proportions of Prediction Error 
Covariances
The VAR(3)-CCC-GARCH(1,1) model for ADRO and PTBA 
data is the best. The univariate model (Table 10) shows that for 
the dependent variable ADRO, the model is very significant with 
P < 0.0001 and R-square = 0.9913. This shows that the model 
with the dependent variable ADRO can explain 99.13% of the 
diversity of ADRO values explained by the model. Table 10 
shows that the model is very significant for the dependent 
variable PTBA, with P < 0.0001 and R-square = 0.9899. This 
shows that the model with the dependent variable PTBA can 

Table 4: Schematic representation cross-correlation
Variable/Lag 0 1 2 3 4 5 6 7 8 9 10 11 12 13
ADRO ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PTBA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
+ is >2 *std error
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Figure 4: Prediction error normality untuk data (a) ADRO, (b) PTBA.

Table 7: Comparison of AICC from models VAR(3)-CCC GARCH(1,1), VAR(3)-CCC GARCH(1,1), dan VAR(4)-CCC 
GARCH(1,1)
Information criterion Model

VAR(2)-CCC GARCH(1,1) VAR(3)-CCC GARCH(1,1) VAR(4)-CCC GARCH(1,1)
AICC 16.4298 16.4287 16.4340

Table 8: Model parameter estimates and test VAR(3)
Equation Parameter Estimate Standard error t-value P-value Variable
ADRO CONST1 19.9918 5.8613 3.41 0.0007 1

AR1_1_1 0.9511 0.0368 25.84 0.0001 ADRO(t−1)
AR1_1_2 0.0472 0.0196 2.40 0.0165 PTBA(t−1)
AR2_1_1 0.0812 0.0504 1.61 0.1073 ADRO(t−2)
AR2_1_2 −0.0939 0.0273 −3.44 0.0006 PTBA(t−2)
AR3_1_1 −0.0410 0.0363 −1.13 0.2588 ADRO(t−3)
AR3_1_2 0.0434 0.0196 2.21 0.0273 PTBA(t−3)

PTBA CONST2 19.8265 9.5004 2.09 0.0371 1
AR1_2_1 0.0191 0.0559 0.34 0.7318 ADRO(t−1)
AR1_2_2 0.9969 0.0407 24.49 0.0001 PTBA(t−1)
AR2_2_1 0.0625 0.0780 0.80 0.4224 ADRO(t−2)
AR2_2_2 −0.0990 0.0569 −1.74 0.0826 PTBA(t−2)
AR3_2_1 −0.0741 0.0557 −1.33 0.1838 ADRO(t−3)
AR3_2_2 0.0894 0.0414 2.16 0.0311 PTBA(t−3)

Table 10: Univariate model ANOVA diagnostic
Variable R-square Standard deviation F-value P-value
ADRO 0.9913 51.1004 20068.3 <0.0001
PTBA 0.9899 81.2181 17256.9 <0.0001

Table 11: Univariate model white noise diagnostic
Variable Durbin 

Watson
Normality ARCH

Chi-Square P-value F-value P-value
ADRO 1.9525 3085.86 <0.0001 37.59 <0.0001
PTBA 1.9482 1523.71 <0.0001 5.39 0.0204

Table 12: Roots dari AR characteristic polynomial
Roots of AR Characteristic Polynomial

Index Real Imaginary Modulus Radian Degree
1 0.9897 0.0043 0.9897 0.0044 0.2493
2 0.9897 −0.0043 0.9897 −0.0044 −0.2493
3 0.0837 0.0000 0.0837 0.0000 0.0000
4 −0.0077 0.2357 0.2358 1.6038 91.8909
5 −0.0077 −0.2357 0.2358 −1.6038 −91.8909
6 −0.0995 0.0000 0.0995 3.1416 180.0000

Table 13: Granger causality wald test
Test Variable Null hypothesis 

Granger causality
DF Chi-square P-value

Test 1 Group 1 
variables: 
ADRO
Group 2 
variables: 
PTBA

ADRO is 
influenced only 
by itself, and not 
by PTBA.

3 11.62 0.0088

Test 2 Group 1 
variables: 
PTBA
Group 2 
variables: 
ADRO

PTBA is 
influenced only 
by itself, and not 
by ADRO.

3 9.14 0.0275

explain 98.99% of the diversity in PTBA values explained by the 
model. Figure 7a the univariate model for the ADRO dependent 
variable is very fit with the data; this is shown by the predictions 
and real data, which are very close. Figure 7b shows ADRO 
forecasting for the next 30 days; the predicted value is decreasing 

for the next 30 days. The magnitude of the prediction value for 
the next 30 days is presented in Table 16. From Table 17 and 

Table 9: CCC-GARCH(1,1) model parameter estimates
Parameter Estimate Standard error t-value P-value
GCHC1_1 9.0215 9.7578 0.92 0.3554
GCHC2_2 37.5419 24.1304 1.56 0.1201
ACH1_1_1 0.0490 0.0150 3.27 0.0011
ACH1_2_2 0.0927 0.0163 5.68 0.0001
GCH1_1_1 0.9513 0.0174 54.46 0.0001
GCH1_2_2 0.9122 0.0153 59.45 0.0001

a b
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Table 14: Impulse on ADRO (in Standard deviation) and its impact up to the next 10 days
Variable Impulse on ADRO
Response Lead 1 2 3 4 5 6 7 8 9 10
ADRO Response 0.9511 0.9868 0.9778 0.9674 0.9588 0.9502 0.9417 0.9332 0.9247 0.9163

Std 0.0368 0.0514 0.0508 0.0515 0.0518 0.0525 0.0535 0.0547 0.0561 0.0578
PTBA Response 0.0191 0.0999 0.1020 0.1034 0.1085 0.1134 0.1181 0.1226 0.1270 0.1313

Std 0.0559 0.0773 0.0725 0.0699 0.0698 0.0698 0.0702 0.0708 0.0719 0.0731

Table 15: Impulse on PTBA (in standard deviation) and its impact up to the next 10 days
Variable Impulse on PTBA
Response Lead 1 2 3 4 5 6 7 8 9 10
ADRO Response 0.0472 −0.0018 −0.0058 −0.0066 −0.0095 −0.0125 −0.0153 −0.0180 −0.0207 −0.0233

Std 0.0196 0.0276 0.0263 0.0253 0.0254 0.0256 0.0258 0.0262 0.0266 0.0272
PTBA Response 0.9969 0.8958 0.8867 0.8807 0.8700 0.8593 0.8489 0.8387 0.8286 0.8185

Std 0.0407 0.0573 0.0522 0.0482 0.0486 0.0491 0.0497 0.0506 0.0518 0.0532

ADROt PTBAt

Figure 5: Granger causality Wald test variable ADRO and PTBA 
based on the results of Table 13

Figure 6: (a) Response to Impulse in ADRO (b) Response to Impulse in PTBA

a b

Figure 7: (a) Model for ADRO, and (b) Forecasting for ADRO for the next 30 days

a b

Figure 8a and b, the proportion of prediction error covariance for 
forecasting ADRO data for the next 30 days, it can be seen that 
the forecasting value for the next 30 days is only influenced by 
itself (ADRO) above 99%, and PTBA did not make a significant 
contribution.

Figure 9a the univariate model for the PTBA dependent variable 
is very fit with the data; this is shown by the predictions and real 
data, which are very close. Figure 9b shows PTBA’s forecasting 
for the next 30 days; the predicted value is decreasing for the next 

30 days. The magnitude of the prediction value for the next 30 days 
is presented in Table 16. From Table 17 and Figure 8a and b, the 
proportion of prediction error covariance for forecasting PTBA 
data for the next 30 days, it can be seen that the forecasting value 
for the next 30 days is influenced not only by itself (PTBA) but 
also influenced by ADRO, and PTBA and ADRO for forecasting 
the next 5 days: for the 1st day PTBA and ADRO respectively 
give an effect of 77.12% and 22.88%; for the 2nd day PTBA and 
ADRO had an effect of 76.69% and 23.31% respectively; for the 
3rd day PTBA and ADRO had an effect of 75.25% and 24.75% 
respectively; for the 4th day PTBA and ADRO had an effect of 
74.46% and 25.54% respectively; for the 5th day PTBA and ADRO 
had an effect of 73.95% and 26.05% respectively; And for future 
long-term forecasting PTBA and ADRO have an influence of 70% 
and 30% respectively (Table 17).
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Table 16: Forecast for the next 30 days of ADRO and PTBA
Variable Obs Forecast Standard error 95% Confidence limit
ADRO 1065 2947.2595 113.2405 2725.3121 3169.2068

1066 2929.8515 159.0174 2618.1831 3241.5199
1067 2911.0760 194.3527 2530.1517 3292.0004
1068 2892.3971 223.5533 2454.2407 3330.5536
1069 2873.9622 248.8403 2386.2441 3361.6802
1070 2855.7270 271.3264 2323.9370 3387.5170
1071 2837.6800 291.6679 2266.0213 3409.3387
1072 2819.8223 310.2946 2211.6560 3427.9887
1073 2802.1529 327.5069 2160.2512 3444.0547
1074 2784.6699 343.5244 2111.3744 3457.9655
1075 2767.3717 358.5141 2064.6969 3470.0464
1076 2750.2565 372.6062 2019.9617 3480.5513
1077 2733.3229 385.9051 1976.9628 3489.6830
1078 2716.5691 398.4958 1935.5317 3497.6066
1079 2699.9937 410.4488 1895.5287 3504.4587
1080 2683.5950 421.8235 1856.8360 3510.3541
1081 2667.3714 432.6705 1819.3528 3515.3901
1082 2651.3215 443.0331 1782.9925 3519.6504
1083 2635.4435 452.9490 1747.6796 3523.2074
1084 2619.7361 462.4515 1713.3478 3526.1243
1085 2604.1976 471.5694 1679.9384 3528.4567
1086 2588.8265 480.3289 1647.3991 3530.2539
1087 2573.6213 488.7529 1615.6832 3531.5595
1088 2558.5806 496.8623 1584.7484 3532.4128
1089 2543.7028 504.6757 1554.5565 3532.8491
1090 2528.9864 512.2102 1525.0727 3532.9001
1091 2514.4300 519.4813 1496.2652 3532.5948
1092 2500.0321 526.5031 1468.1048 3531.9594
1093 2485.7913 533.2886 1440.5648 3531.0178
1094 2471.7061 539.8496 1413.6201 3529.7920

PTBA 1065 4077.0638 139.2207 3804.1962 4349.9313
1066 4069.6018 197.8092 3681.9028 4457.3009
1067 4059.4611 238.0832 3592.8266 4526.0956
1068 4049.1705 272.1455 3515.7751 4582.5659
1069 4039.0060 302.2730 3446.5618 4631.4502
1070 4028.8547 329.3899 3383.2623 4674.4470
1071 4018.7025 354.1874 3324.5078 4712.8972
1072 4008.5574 377.1354 3269.3856 4747.7292
1073 3998.4213 398.5572 3217.2635 4779.5791
1074 3988.2949 418.6904 3167.6767 4808.9131
1075 3978.1792 437.7163 3120.2710 4836.0874
1076 3968.0752 455.7766 3074.7693 4861.3811
1077 3957.9840 472.9852 3030.9499 4885.0180
1078 3947.9065 489.4346 2988.6322 4907.1809
1079 3937.8438 505.2019 2947.6662 4928.0214
1080 3927.7968 520.3516 2907.9264 4947.6672
1081 3917.7663 534.9387 2869.3057 4966.2269
1082 3907.7534 549.0104 2831.7126 4983.7942
1083 3897.7589 562.6079 2795.0676 5000.4501
1084 3887.7836 575.7668 2759.3013 5016.2659
1085 3877.8285 588.5188 2724.3527 5031.3043
1086 3867.8943 600.8919 2690.1677 5045.6208
1087 3857.9818 612.9110 2656.6983 5059.2653
1088 3848.0918 624.5984 2623.9013 5072.2824
1089 3838.2252 635.9744 2591.7381 5084.7123
1090 3828.3826 647.0572 2560.1737 5096.5915
1091 3818.5648 657.8634 2529.1762 5107.9534
1092 3808.7724 668.4080 2498.7167 5118.8282
1093 3799.0063 678.7050 2468.7688 5129.2438
1094 3789.2670 688.7671 2439.3082 5139.2259
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Figure 9: (a) Model for PTBA, and (b) Forecasting for PTBA for the next 30 days

b

Table 17: Proportions of prediction error covariances by variable
Variable Lead ADRO PTBA Variable Lead ADRO PTBA
ADRO 1 1.0000 0.0000 PTBA 1 0.2287 0.7712

2 0.9978 0.0022 2 0.2332 0.7667
3 0.9985 0.0014 3 0.2474 0.7525
4 0.9988 0.0011 4 0.2553 0.7446
5 0.9990 0.0009 5 0.2604 0.7395
6 0.9991 0.0008 6 0.2644 0.7355
7 0.9992 0.0007 7 0.2678 0.7322
8 0.9992 0.0007 8 0.2706 0.7293
9 0.9992 0.0007 9 0.2732 0.7267
10 0.9992 0.0007 10 0.2756 0.7243
11 0.9992 0.0008 11 0.2778 0.7221
12 0.9991 0.0008 12 0.2799 0.7200
13 0.9990 0.0009 13 0.2819 0.7180
14 0.9989 0.0010 14 0.2838 0.7161
15 0.9988 0.0011 15 0.2857 0.7143
16 0.9987 0.0012 16 0.2874 0.7125
17 0.9986 0.0014 17 0.2892 0.7107
18 0.9984 0.0015 18 0.2909 0.7090
19 0.9983 0.0017 19 0.2926 0.7073
20 0.9981 0.0018 20 0.2942 0.7057
21 0.9979 0.0020 21 0.2958 0.7041
22 0.9977 0.0022 22 0.2974 0.7025
23 0.9975 0.0024 23 0.2990 0.7009
24 0.9973 0.0026 24 0.3005 0.6994

a

Figure 8: Proportions of prediction error covariances (a) for forecasting ADRO, (b) for forecasting PTBA

a b
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4. CONCLUSION

In this study, the daily stock prices of ADRO and PTBA from 
two energy companies in Indonesia and the data are taken from 
January 2018 to December 2022. The data are analyzed using a 
multivariate time series analysis approach. From the preliminary 
study, the data shows nonstationary cross-correlation and has 
an ARCH effect. After the differentiation process, the data is 
stationary. Based on the study of the assumptions, the VAR(p)-
CCC-GARCH(r,s) model is applied to the data. For the CCC-
GARCH(r,s) model, the parameter estimation used is the Constant 
Conditional Correlation (CCC-GARCH(r,s)) applied to the data. 
The best and most suitable model for the data is the VAR(3)-CCC-
GARCH(1,1) model. The granger causality analysis shows that 
ADRO and PTBA are mutually granger causality (bidirectional 
granger causality), meaning that future predictions from ADRO 
will be influenced by themselves and past information from PTBA 
and future predictions.

PTBA’s future will be influenced not only by himself but also by 
past information from ADRO. The IRF analysis results explain: 
If a shock of one standard deviation occurs in ADRO, ADRO and 
PTBA respond. ADRO’s response is positive for the next 24 days 
with a downward trend, while PTBA’s response is positive with 
an upward trend; If a shock of one standard deviation occurs in 
PTBA, PTBA itself and ADRO respond. ADRO’s response is 
negative and weak and has a downward trend in the next 24 days, 
while PTBA’s response is quite large and positive with a downward 
trend. From the results of forecasting for the next 30 days (period), 
ADRO’s closing price is decreasing, as well as PTBA’s closing 
price which has a downward trend for the next 30 days.

5. ACKNOWLEDGMENT

In writing this paper, many parties have provided assistance and 
support in this research. Some of them in particular we would 
like to mention, first the authors would like to thank the Research 
Center of the University of Lampung for providing financial 
support through the Multidisciplinary Research Scheme for 
the Academic Year 2023. The authors would like to thank www. 
enago.com (Enago proofread) for reviewing language and we 
would like to thanks the anonymous reviewers.

REFERENCES

Abounoori, E., Elmi, Z.M., Nademi, Y. (2016), Forecasting Tehran stock 
exchange volatility; Markov switching GARCH approach. Physica 
A Statistical Mechanics and its Applications, 445, 264-282.

Basu, S., Li, X., Michailidis, G. (2019), Low rank and structured modeling 
of high-dimensional vector autoregressions. IEEE Transactions on 
Signal Processing, 67, 1207-1222.

Bauwens, L., Hafner, C., Laurent, S. (2012), Hanbook of Volatility Models 
and their Applications. New York: John Wiley and Sons.

Bollerslev, T. (1986), Generalized autoregressive conditional 
heteroskedasticity. Journal of Econometrics, 31, 307-327.

Bollerslev, T., Engle, R.F., Wooldridge, J.M. (1988), A capital asset 
pricing model with time-varying covariances. Journal of Political 
Economy, 96, 116-131.

Bollerslev, T. (1990), Modeling the coherence in short-run nominal 
exchange rates: A multivariate generalized ARCH model. The 
Review of Economics and Statistics, 72, 498-505.

Brockwell P.J., Davis, R.A. (1991), Time series Theory and Methods. 
New York: Springer-Verlag.

Brockwell P.J., Davis, R.A. (2002), Introduction to Time Series and 
Forecasting. New York: Springer-Verlag.

Bulteel, K. (2018), Multivariate Time Series Vector Autoregressive 
Models and Dynamic Networks in Psychology Extensions and 
Reflections. In: Faculty of Psychology and Educational Sciences, 
Doctoral Thesis.

Burke, S.P., Hunter, J. (2017), Multivariate Modelling of Non-stationary 
Economic Time Series. United Kingdom: Palgrave Macmillan.

Chamalwa, H.A., Bakari, H.R. (2016), A vector autoregressive (VAR) 
cointegration and vector error correction model (VECM) approach 
for financial deepening indicators and economic growth in Nigeria. 
American Journal of Mathematical Analysis, 4, 1-6.

Cheong, C.W. (2009), Modeling and forecasting crude oil markets using 
ARCH-type models. Energy Policy, 37, 2346-2355.

Crifter, A. (2013), Forecasting electricity price volatility with the Markov-
switching GARCH model: Evidence from the Nordic electric power 
market. Electric Power Systems Research, 102, 61-67.

Dumitrescu, B., Giurcăneanu, C.D., Ding, Y. (2019), Identification 
of Vector Autoregressive Models with Granger and Stability 
Constraints. In: 27th European Signal Processing Conference 
(EUSIPCO). p1-5.

Engle, R.F. (1982), Autoregressive conditional heteroskedasticity with 
estimates of the variance of U.K. Inflation. Econometrica, 50, 987-1008.

Engle, R.F., Granger, C.W.J., Kraft, D. (1984), Combining competing 
forecasts of inflation using a bivariate arch model. Journal of 
Economic Dynamics and Control, 8, 151-165.

Engle, R.F., Kroner, F. (1995), Multivariate simultaneous generalized 
arch. Econometric Theory, 11, 122-150.

Florens, J.P., Marimoutou, A., Peguin-Feissolle, A. (2007), Econometric 
Modelling and Inference. New York: Cambridge University Press.

Franco, C., Zakoian, J. (2010), GARCH Models: Structure, Statistical 
Inference and Financial Applications. New York: John Wiley and 
Sons.

Hamilton, H. (1994), Time series Analysis. Princeton, New Jersey: 
Princeton University Press.

Hamzah, L.M., Nabilah, S.U., Russel, E., Usman, M., Virginia, E., 
Wamiliana. (2020), Dynamic modelling and forecasting of data 
export of agricultural commodity by vector autoregressive model. 
Journal of Southwest Jiaotong University, 55(3), 1-10.

Harville, D. (1997), Matrix Algebra from a Statistician’s Perspective. 
New York: Springer.

Herrera, M., Liang, Hu., Pastor, D. (2018), Forecasting crude oil price 
volatility. International Journal of Forecasting, 34(4), 622-635. 

Hosking, J.R.M. (1980), The multivariate portmanteau statistic. Journal 
of the American Statistical Association, 75, 602-608.

Hosking, J.R.M. (1981), Lagrange-multiplier tests of multivariate time-
series models. Journal of the Royal Statistical Society Series B, 43, 
219-230.

Keng, C.Y., Shan, F.P., Shimizu, K., Imoto, T., Lateh, H., Peng, K.S. 
(2017), Application of vector autoregressive model for rainfall and 
groundwater level analysis. AIP Conference Proceedings, 1870(1), 
060013.

Kraft, D., Engle, R. (1982), Autoregressive Conditional Heteroskedasticity 
in Multiple Time Series. Unpublished Manuscript. Department of 
Economics. United States: UCSD.

Li, W.K., McLeod, A.I. (1981), Distribution of the residual autocorrelations 
in multivariate ARMA time series models. Journal of the Royal 
Statistical Society Series B, 43, 231-239.



Usman, et al.: Dynamic Modeling and Analysis of Some Energy Companies of Indonesia Over the Year 2018 to 2022 By Using VAR(p)-CCC GARCH(r,s) Model

International Journal of Energy Economics and Policy | Vol 13 • Issue 4 • 2023554

Lin, Y., Yang, X., Li, F. (2020), Forecasting crude oil price volatility via 
a HM-EGARCH model. Energy Economics, 87, 104693.

Lutkepohl, H. (2005), New Introduction to Multiple Time Series Analysis. 
Berlin: Springer-Verlag.

Lutkepohl, H. (2020), Structural Vector Autoregressive Models with 
more Shocks than Variables Identified via Heteroskedasticity. DIW 
Berlin Discussion Paper No. 1871. Available from: https://ssrn.com/
abstract=3610599 [Last accessed on 2023 Feb 10].

Nairobi, N., Russel, E., Ambya, A., Darmawan, A., Usman, M., 
Wamiliana W. (2020), Dynamic modeling data export oil and gas 
and non-oil and gas by ARMA(2,1)-GARCH(1,1) model: Study of 
Indonesian’s export over the years 2008-2019. International Journal 
of Energy Economics and Policy, 10(6), 175-184.

PT. Adaro Energy Indonesia Tbk [ADRO]. Available from: https://www.
idnfinancials.com/id/adro/pt-adaro-energy-indonesia-tbk. [Last 
accessed on 2023 Jan 10, 2023.

PT. Bukit Asam Tbk (PTBA). (2022), Sejarah dan Profil Singkat PTBA. 
Available from: https://britama.com/index.php/2012/12/sejarah-dan-
profil-singkat-ptba [Last accessed on 2023 Jan 10].

Tsay, R.S. (2010), Analysis of Financial Time Series. Hoboken, New 
Jersey: John Wiley and Sons, Inc.

Tsay, R.S. (2014), Multivariate Time Series Analysis. New York: John 
Wiley and Sons.

Tse, Y.K., Tsui, A.K.C. (2002), A multivariate GARCH model with time-
varying correlations. Journal of Business and Economic Statistics, 
20, 351-362.

Usman, M., Komaruddin, M., Sarida, M., Wamiliana, W., Russel, E., 
Kufepaksi, M., Alam, A.I., Elfaki, F.A.M. (2022), Analysis of some 

variable energy companies by using VAR(p)-GARCH(r,s) model: 
Study from energy companies of qatar over the years 2015-2022. 
International Journal of Energy Economics and Policy, 12(5), 178-191.

Warsono, W., Russel, E., Putri, A.R., Wamiliana, W., Widiarti, W., 
Usman, M. (2020), Dynamic modeling using vector error-correction 
model: Studying the relationship among data share price of energy 
PGAS Malaysia, AKRA, Indonesia, and PTT PCL-Thailand. 
International Journal of Energy Economics and Policy, 10(2),  
360-373.

Warsono, W., Russel, E., Wamiliana, W., Widiarti, W., Usman, M. 
(2019a), Vector autoregressive with exogenous variable model 
and its application in modeling and forecasting energy data: Case 
study of PTBA and HRUM Energy. International Journal of Energy 
Economics and Policy, 9(2), 390-398.

Warsono, W., Russel, E., Wamiliana, W., Widiarti, W., Usman, M. 
(2019b), Modeling and forecasting by the vector autoregressive 
moving average model for export of coal and oil data (Case study 
from Indonesia over the years 2002-2017). International Journal of 
Energy Economics and Policy, 9(4), 240-247.

Wei, W.W.S. (2006), Time Series Analysis: Univariate and Multivariate 
Methods. Redwood City, California: Addison-Wesley Publishing 
Company.

Wei, W.W.S. (2019), Multivariate Time Series Analysis and Application. 
New York: John Wiley and Sons.

Zhang,T., Yin, F., Zhou, T., Zhang, X.Y., Li, X.S. (2016), Multivariate 
time series analysis on the dynamic relationship between Class B 
notifiable diseases and gross domestic product (GDP) in China. 
Scientific Reports, 6, 29.


