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ABSTRACT

The use of extreme value theory (EVT) is usually aimed at quantifying the asymptotic behaviour of extreme quantiles. The generalised Pareto 
distribution (GPD) with peaks-over-threshold approach is applied to bootstrap uncertainty intervals for the return periods of extreme daily electricity 
consumption in South Africa (SA) for the period of 02 January 2014–29 March 2021. The leeway of extremes in daily electricity consumption studied 
here is the impetus behind this study. To examine the effect of a time-based and extreme non-stationary trend in a dataset, a non-stationary GPD is 
cast-off in computing the shape parameter ξ and, this resulted in the establishment of a type III GPD known as a Weibull class for the SA electricity 
sector. Results of this study revealed a non-stationary trend with a prediction power of 89.6% for the winter season and 85.65% non-winter season. 
This means that EVT provides a robust basis for statistical modelling of extreme values. Furthermore, a base for future researchers for conducting 
studies on emerging markets, more specifically in the SA context has also been contributed.

Keywords: Bayesian; Extreme Value Theory; Generalised Pareto Distribution; Markov-chain-Monte-Carlo; Peaks-Over-Threshold 
JEL Classifications: C1, C4, C5

1. INTRODUCTION

South Africa (SA) is considered to be the highest electricity 
producer and consumer in Africa. It has been reviewed that, more 
than 50% of engendered electricity in Africa comes from SA. 
Likewise, the nation-state is archaeologically well-thought-out to 
have one of the peak electricity reserve margins Sigauke (2014). 
These margins decreased from 25% in 2002 to 20% in 2004 and 
thereafter to 16% in 2006. Meanwhile, in 2008, the reserve margins 
were projected to be 8-10% which was extremely below the target 
margin of 15%. Since the year 2013, electricity consumption has 
increased remarkably in the residential sector and this increase 
was from 18200 kWh in 2013 to 19000 kWh in 2016.

The combined effects of all these changes in demography, 
and economy can be investigated using historical patterns, but 
contribute to uncertainties when forecasting future electricity 
consumption. The infiltration of different sources of electricity, 

for example, renewables, sunlight based and wind, could equally 
have added to a decrease in electricity demand. Due to the absence 
of capacity experienced by Eskom by 2007 to generate enough 
electricity, some organisations and families had to find different 
ways of power sources and Mokilane (2018) emphasised that this 
would have brought about a decrease in demand for electricity. 
Shockingly, the genuine size of the power consumption market 
is yet obscure because of the inaccessibility of sustainable power 
sources and different types of power generation. The joined impact 
of everyone on adjustments in demography, economy and energy 
consumption patterns are explored utilising chronicled designs; 
thus far add to vulnerabilities when attempting to predict and 
forecast future electricity consumption. Ever since the year 2008, 
different interventions toward electricity supply were implemented 
because of high electricity demand. This fused a national awareness 
campaign among others (Khobai, 2018). In some instances, load 
shedding had to be used as the last resort to prevent a system-wide 
blackout. These interventions slightly brought electricity demand 
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close to its supply, while at the same time reasonable reserve 
margins were being maintained. In energy sectors risk denotes 
a probability distribution of future returns; hence, uncertainty is 
considered as a broader concept that incorporates indistinctness 
about the parameters of this probability distribution Babatunde et 
al. (2020) and Anwar et al. (2020).

There are various types of measures seeking to estimate risk and 
uncertainty: (1) realised and derivatives-implied distributions 
of returns across assets, (2) news-based measures of policy and 
political insecurity, (3) survey-based indicators, (4) econometric 
measures, and (5) ambiguity indices. The benefits of macro trading 
are threefold. First, uncertainty measures provide a basis for 
comparing risk assessment of the prevailing market with private 
information and research. Second, changes in economic indicators 
often forecast near-term flows in and out of risky asset classes. 
Third, the level of public and any market uncertainty is indicative 
of risk premia offered across asset classes.

However, daily return periods necessitate planning under 
uncertainty, and one must contend with operational, tactical, 
and strategic considerations. The energy sector planning under 
uncertainty entails determining the appropriate location of a sector, 
its size, transmission, and distribution (returns flow analysis, 
analysis of the frequency, and occurrence of extreme losses and 
scheduling of risk factors). Uncertainties in forecasting extreme 
daily losses may arise because of increased technology allowing 
energy fraud systems; resulting in a stock market crash, population 
growth, and general randomness in individual energy market 
participants, as well as current economic insecurity and political 
conditions Sigauke et al. (2014). The inborn vulnerabilities in 
predictions suggest that forecasts ought to be probabilistic in 
an ideal world. In other words, they should take the form of 
probability distributions over future quantities or events (Gneiting 
and Katzfuss, 2014). Probabilistic forecasting of electricity 
uncertainty and risk promotes the management of electricity use 
and planning. The use of VaR and or ES is a measure that aims at 
lowering risk effects such as that of credit risk, exchange rate risk, 
and interest rate risk—to mention a few that harm the economy 
and some other sectors of the economy. This also gives a positive 
impact on market values that are associated with the use of other 
portfolios such as an aggressive portfolio. Short-term forecasting 
has a superior impact on the safety and financial implication of the 
economic network. Since the energy sector has a stochastic and 
uncontrollable nature, the current study makes use of generalised 
Pareto distribution (GPD) via peaks-over-threshold (POT) through 
the Bayesian procedure. This approach helps to obtain more robust 
credible estimates and solve uncertainty problems.

To achieve this objective, a more robust methodology for modelling 
uncertainty is considered, and Beutner et al. (2018) defined this 
method as a bootstrap to probability forecasting. These authors 
emphasised that different bootstrap procedures have been studied 
and are based only on generalized autoregressive conditional 
heteroscedasticity (GARCH) estimates. Therefore, this study 
extends the GARCH bootstrap estimates to an extreme approach 
by utilising the GPD and comparing the performance of four risk 
measures namely Value—at—Risk (VaR), Expected shortfall (ES), 

Conditional tail expectation (CTE) and Glue—Value—at—Risk 
(GVaR) in estimating associated risk on daily electricity uncertainty, 
and currently, no other study has taken this approach. Bootstrapping 
of extreme intervals for return periods with GPD estimates gives 
precise and accurate extreme return or loss periods.

Since the number of recent contributions related to forecasting 
returns and loss periods is extremely large, the main contribution of 
this study is forecasting and bootstrapping extreme returns periods 
on losses of daily electricity consumption by the use of GPD. This 
approach takes into consideration real-time forecasting and it 
improves the accuracy of the forecasts, and one to identify extreme 
changes in the immediate, especially when dealing with economic 
conditions that are constantly changing. Most researchers when 
forecasting extreme daily return periods overlook this feature. 
The second contribution is the development of a truncated 
Wild bootstrap (TWB). However, Siegl and West (2001) used 
a Monte-Carlo (MC) bootstrapping method which refined the 
computational results in different ways through resampling. 
But, with the proposed truncated Wild bootstrap, the procedure 
accounts for asymmetric distributions; moreover, under further 
assumptions, if the observations belong to the domain of attraction 
of a symmetric stable law, it performs equally well in terms of 
average coverage, and yet, shorter intervals in smaller samples as 
compared to recursive bootstrap through the MC procedures. The 
last contribution is the estimation of risks associated with losses 
on daily electricity consumption and comparing the prediction 
performance of these risk measures.

2. METHODOLOGY

The data that is used in this paper comprises of total daily 
electricity consumption of SA for the period of 02 January 2014 
to 29 March 2021. Data for the period 01 August to 30 April of 
each year are defined as the non-winter season while the remaining 
period of 01 May to 31 July is defined as the winter season period. 
In total there are 2645 observations from which 2644 daily 
consumption is calculated. Let Xt be daily electricity consumption 
on day t and Xt-1 be daily electricity consumption on day t-1, then, 
daily consumption is defined as a day-to-day change in electricity 
consumption. The South African power utility company (ESKOM) 
provided this data. Assuming that Xt has a density function of F; 
an access distribution over according to Sigauke (2014) has the 
following density function

 F x P X u x|X
F x u F u

F u
u � � � � � �� � �

�� � � � �
� � �

0
1

 (1)

for0 ≤ x <xF–u, where F ≤ ∞ is the right endpoint of F. According 
to Fotouhi (2019) and Sigauke et al. (2013) the right endpoint is 
understood as xF = sup (x ∈ R: F(x) < 1).

2.1. The GPD and POT
The GPD plays a role in a natural distribution of excesses over 
a reasonably high threshold Maposa et al. (2016). According to 
Arnold (2014), the shape parameter ξ in a GPD serves the same 
purpose as in the generalised extreme value distribution (GEVD). 
Nortey et al. (2015) and Scarrott and MacDonald (2012) disclosed 
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that for a sequence of observations say X1,…,Xn, the extremes 
x-u of some suitably high threshold u can be well approximated 
by GPD (μ; σ; ξ); while Chinhamu et al. (2015) revealed that a 
three parameter GPD with σ as a scale parameter and ξ as a shape 
parameter is given by

 ( )

( )

( )

1

,

1 1 , 0

1 exp , 0

x

G x
x
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 (2)

where, x > 0 when ξ ≤ 0, Tsay (2014) and Huang et al. (2015). For 
the selection of a threshold value, the Hill’s and mean excess life 
plots are used in this study. If the behaviour of both plots increases, 
these results provide a piece of evidence that the tails of a series 
studied are heavier than the exponential distribution. The point 
from which an increasing and linear behaviour starts can be a 
rough indication of an appropriate threshold value.

2.2. Bayesian Inferences to Parameter Estimates
In the Bayesian methodology, all obscure quantiles are considered 
as irregular factors and vulnerabilities over those quantiles that 
are addressed utilizing the likelihood contingent of the accessible 
data. When estimating any parameter using classical or frequentist 
methods, the sampling distribution of a parameter is most 
likely assumed to be normal or Gaussian. This methodology is 
very unrefined in the sense that in real situations the sampling 
distributions of parameters can deviate from normality. With 
Bayesian analysis, reasonable approximations to the sampling 
distribution are thought of; and their inferences are arrived 
at utilizing non-exclusive procedures and observed data. The 
fundamental standard behind Bayesian statistics is as follows. 
Some prior thoughts regarding any parameter or data set can 
neither be acquired from prolonged, some detailed observations 
nor by comparing them with similar conditions Pu et al. (2021).

The Bayesian approach also allows for an additional source of 
variation, which implies that the parameters now have probability 
distributions with hyper-parameters giving small standard errors. 
This is achieved through the naive standard errors, which are 
computed by dividing the actual standard deviation by the number 
of iterations just as Maposa et al. (2016) has suggested. Furthermore, 
Droumaguet (2012) also emphasized that Bayesian methods provide 
densities of the model parameters, which solves the problem of a 
confidence interval, and finally Bayesian shrinkage techniques allow 
models to be estimated with higher dimensions and these would have 
complex shapes of the likelihood function and be more difficult to 
estimate with classical algorithms. Sigauke et al. (2012) declared 
that ambiguity about the parameters is very minimal.

2.3. The Likelihood Function
For the GPD, a parameter vector θ = (μ, σ, ξ) and its Bayes 
estimates for discrete and continuous functions are given by

 f x
f f x

f x
f f x

f f x
i
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and,
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where, f (θ), f (x|θ), f (x|θ) f (x) are the prior, posterior, likelihood, 
and normalization constant respectively. In addition to that, Vidal 
(2014) has indicated that posterior information is a combined sum 
of prior and sample information. With these computations, model 
(4) is further modified to
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where θ is the vector parameters of the generalized Pareto 
distribution, P (θ|x) is the posterior distribution, x is a vector 
of observations; Φ is the space parameter, p(θ) is the prior 
distribution, and p(x|θ) is the likelihood function of the GPD.

Therefore, three parameters are estimated following a joint 
posterior distribution of µ, σ and ξ and this joint distribution is 
given by
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where π (μ, σ, ξ) ∝ (1⁄σ) exp –ξ is the maximal data 
information(MDI) before Jonathan et al. (2021), Nμ is the number 
of observations above the threshold. The three parameters are 
estimated by simulating a large number of μʹ s, σʹ s, and ξʹ s 
values from the posterior distribution and taking the mean of 
the simulated values to obtain estimates. To simulate a set of 
(μ, σ, ξ)’s from the posterior Metropolis-Hastings algorithm by 
simulating alternatively μ and, σ from their conditional density 
function given a fixed ξ. The parameter ξ is then simulated from its 
conditional density given the selected σ. This process is repeated 
numerous times. Future posterior predictive tail probabilities of 
a future observation Y0, can be predicted through the following 
posterior predictive density

p Y y y y y0 0 0

1
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�
�

�
�
�

�� � � �

� � �
�

, , , ,� � � � 



�

�







 (7)

According to Jonathan et al. (2021), equation (7) cannot be 
computed analytically but can be approximated easily by 
simulation. Hence, equation (6) is used to simulate the values 
of µ, σ, and ξ which are then substituted into equation. (7). The 
average over all the tail probabilities is then used to estimate the 
posterior predictive tail probability.

2.4. Risk Measures
Having obtained estimators for ξ, σ and μ the conditional VaR, 
CTE, GVaR and ES for a one-period ahead are estimated at the 
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α level. Employing the proposed GPD, the conditional VaR 
according to Anjum and Malik (2020) is estimated as

 

( )
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β̂ and ξ̂  are the estimates of the GPD parameters, and Nu is the 
number of observations  above the threshold µ in a given sample 
see, for instance, Pfaff (2016). Expected shortfall considers a loss 
beyond Value-at-Risk level and is shown to be sub-additive, while 
VaR disregards a loss beyond the percentile and is not sub-additive. 
Nadarajah et al. (2014) provided a general computation of ES with 
a given probability π which is defined as
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where I(.) denotes the risk indicator function. Adopting theorem 3 
of Yang et al. (2015), the conditional tail expectation is computed 
as

2.5. Theorem 3 of Yang et al. (2015)
Let {X1, X2,…, Xn} be a real-valued independent random variable 
with the following density function {F1, F2,…, Fn} and the row 
vector {θ1, θ2,…,θn} to be nonnegative and nondegenerate zero 
random variables which is independent of {X1, X2,…, Xn} but 

subjective on each other. If F Jk k
k

k k� � � �� �L D, ,� ��  and 

 � �k k k kX x X x�� � � �� �� �0 for all k ∈ {1,2,…, n}, then,

  S II X IIn S
i

n

X x
n
x

�
�� �

)�
�

�� �
��
�



1

1 1
1 1

 (10)
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if θ1 = θ2,…,θn ≡ 1. Tang and Yuan (2014) publicised that 
asymptotic CTE of level q is

 CTE S S S xq n n n q
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where, x VaR S y S y qq q n n� � � � � �� � �� �� �inf :  . Equation 

(12) has been later modified by Yang et al. (2015) to
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Given a confidence level α, the distortion function for Glue-VaR is
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where, α, β ∈ [0,1] so that α ≤ β, h1 ∈ [0,1] and h2 ∈ [h1, 1], β 
is the additional confidence parameter in addition to α. Belles-
Sampera et al. (2014), showed that the shape of the Glue-VaR is 
determined by distorted survival probabilities h1 and h2 and levels 
1-β and 1-α respectively. h1 and h2 are known as the distortion 
function heights. Therefore, Glue-VaR is computed by
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h h
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where,  ω1, ω2  and ω3 are from the notation
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The choice of this measure is based on the Omega ratio as a tool 
for effective measurement and it also helps in dividing a set of 
investment outcomes into two groups: the area of profits and 
the area of losses. Furthermore, no other study has applied this 
measure for risk assessment for financial market risk.

For a continuous random variable, Omega is computed by

 � X
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where τ is a given threshold.

2.6. Return Level Periods
The return level is a common and relatively simple measure of 
extreme events. The return level for the first year is the quantile 

that in a particular year has a 1 1
π

 probability to be exceeded (Hu 

and Scarrott, 2018). Assuming that a two-parameter GPD is 
appropriate to model a variable Xt for the exceedances of u, Coles 
et al. (2001) revealed that the return level for x > u is as follows
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It follows that:
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where, ζu = Pr {X > x}. The level xm that exceeded observation 
is the solution of

 1
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When rearranged it simplifies to
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provided m is sufficiently large to ensure that xm > u. This all 
assumes that ξ ≠ 0. If working with ξ = 0, showed that equation 
(18) leads to
 x u mm u� � � �� �log  (21)

By definition, xm is a return level for m– observation. Hu and 
Scarrott (2018) pointed out that plotting xm against m on a 
logarithmic scale produces the same qualitative characteristics as 
return plots based on a GPD distribution when ξ = 0, it is concave 
when ξ > 0 and it is convex when ξ < 0. Coles et al. (2001). It is 
quite convenient to present the return level on the annual scale so 
that the N year return level is the level expected to be exceeded 
once every N year. Hence, the N-year return level is defined by

 Z u NnN y u� � � � ��
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But, if ξ = 0, then (20) becomes

 x u mnm y u� � � �� �log  (23)

2.7. Bootstrapping Predictive Uncertainty Intervals
The Truncated Wild Bootstrap (TWB) is a bootstrap algorithm 
that is similar in construction to the Wild Bootstrap (WB) of 
Cavaliere and Georgiev (2013) but is only limited to several 
observations that are truncated based on some critical values 
around an axis of symmetry, hence its name. The TWB is more 
general than the WB because it accounts for asymmetric 
distributions. Moreover, under further assumptions, namely, if the 
observations belong to the domain of attraction of a symmetric 
stable law, the TWB is the WB of Cavaliere and Georgiev (2013). 
The truncated Wild bootstrap for testing the following hypothesis 
H
H
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1 0
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 that is propose here is described by Algorithm 1 below.
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Where Ki≔ σ̂ -1 (Xi–θ0) and B represents the number of bootstrap 
samples created based on a single sample  .

Return: bootstrap P value which is equal to the proportion of 
bootstrap statistics Sn
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3. EMPIRICAL ANALYSIS AND DISCUSSION

A GPD is fitted to the daily electricity consumption of SA using a 
POT approach. A non-stationary GPD denoted GPD (Φ0}is fitted. 
Various R packages, such as MCMC4extremes of e Silva and do 
Nascimento (2022), extRemes’ version 2.0-11 of Gilleland and 
Katz (2016), ismev of Gilleland (2018), evdBayes’ version 1.1-1 
of Stephenson and Ribatet (2015) among others are used to execute 
the main analysis. The distribution of electricity consumption is not 
normally distributed as evidenced in Figure 1. The first panel shows 
some upward and downward trends in conjunction with seasonality. 
This is also confirmed by the logarithmic returns on the middle 
panel as the series shows volatile patterns. Regarding the marginal 
distribution, the quantile-quantile (Q-Q) plot in the right panel 
reveals a strong departure from linearity in the tails. This evidence 
is seen in Table 1 because the reported kurtosis is greater than 
three and the skewness is less than zero indicating that electricity 
consumption is asymmetry with negatively skewed innovations.

3.1. Winter and Non-Winter Monthly Electricity 
Consumption over a Specified Threshold
Using the mean residual life and Hills plots, a threshold value of 
19671 kWh for the winter season is selected and for the non-winter 
season, 19752kWh is selected as a threshold value. Initially, 75 
and 104 data points are respectively collected for both winter and 
non-winter seasons. Unlike Thevaraja and Sanjel (2016) who used 
a maximum likelihood method, this study makes use of Bayesian 
MCMC methods for the proposed non-stationary GPD. According 

Table 1: Descriptive statistics
Electricity Kurtosis Skewness

69.36 −17.83
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to Stroud et al. (2017), the MCMC approach provides accurate 
and full probabilistic inference for the parameter estimates. As 
revealed in Tables 2 and 3 the estimated shape parameter of a 
non-stationary GPD which is denoted by ξ̂  is negative implying 
that the fitted GPD is a type III GPD known as a Weibull-GPD. 
The standard errors are calculated by dividing the actual standard 
deviation by the number of iterations. As Stephenson (2016) has 
indicated, this is because the Bayesian approach allows for an 
additional source of variation, which implies that the parameters 
now have a probability distribution with hyper-parameters that 
gives small standard errors; showing that ambiguity about the 
parameters is very minimal. Since for both winter and non-winter 
extremes, the shape parameter is high above the threshold estimate 
of 10, the implication is that ξ̂  roughly plays the role of a scale 
parameter under the exponentiated GPD (Lee and Kim, 2019).

In addition, the 95% confidence interval for ξ̂  is estimated for 
both winter and non-winter seasons by the following formula 

2
ˆ  ( ˆ ˆ)Z seαξ ξ ξ=± × . Note that these intervals for both seasons have 

negative limits which enclose ξ̂  endorsing the appropriateness 
of a Weibull class of distributions. The estimates of the slope, µ 
are positive values for all seasons, indicating that daily extreme 
electricity consumption had an increasing trend over the past 
decade in SA. The same results of negative shape parameter and 
positive slope were found by Gagaza et al. (2019) in their study 
of modelling non-stationary temperature extremes in KwaZulu-
Natal using the generalised extreme value distribution. 
Furthermore, it can be seen that the slope of distribution for both 
winter and non-winter seasons falls faster near zero and produces 
infinitely long and thick tails.

Nevertheless, the four risk measures that are discussed in the 
previous section are used to compute the risk of losses in the energy 
sector in SA for daily electricity consumption and the results are 
presented in Table 4.

Table 2: Winter daily electricity consumption MCMC Estimates
Threshold Proportion GPD 95% CI for 
u P ξ̂ Se ( ξ̂ ) ββ � Se ( ββ � ) µ̂ Se ( µ̂ )

Electricity
19671 0.845 −0.076 0.019 443.637 192.818 0.207 0.068 (−0.416; −0.090)

Table 4: Computation risk measures on daily losses in electricity consumption
p Winter Season Non-Winter Season

VaR ES CTE Glue VaR-Risk VaR ES CTE Glue VaR-Risk 
Electricity Consumption 0.95 1.738 1.413 3.211 1.572 1.140 1.370 8.479 0.842

0.99 1.206 0.984 5.351 3.074 1.140 1.890 10.719 0.953

Figure 1: Returns on Electricity Consumption and Q-Q Plot

Table 3: Non-Winter daily electricity consumption MCMC Estimates
Threshold Proportion GPD 95% CI for 
u P ξ̂ Se ( ξ̂ ) ββ � Se ( ββ � ) µ̂ Se ( µ̂ )

Electricity
19752 0.876 −0.253 0.083 648.280 358.495 0.168 0.074 (−0.416;-0.090)
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For the winter season, the extreme losses at 99% for VaR 1.206. 
This indicates that 99% of the time Eskom is expected not to lose 
more than 1.206% while the expected loss using ES at 99% is 
0.984%. Nevertheless, while using CTE, the extreme losses are 
estimated at 5.35%. The implication here is that the highest losses 
expected by daily electricity consumption in the winter season are 
estimated at 5.351%. But in the non-winter season, the highest 
extreme losses are estimated at 10.719% when using CTE which 
is surprisingly shocking because in winter more electricity is 
consumed by every sector of the economy. Moreover, Huang et al. 
(2015a), revealed that a one-day change in the financial market’s 
value would not decrease. To take into account market liquidity 
constraints and Basel regulations, 5-day risk horizons in addition 
to the more typical 1-day horizon were being considered.

The computation of economic capital using the glue-VaR measure 
is more conservative than using other risk measures under the 
winter season. Therefore, the conclusion made is that winter and 
non-winter estimates of Glue-VaR risk under different confidence 

levels exhibit analogous characteristics as observed from VaR, ES 
and CTE. Generally, it can be noticed from Table 5 that the non-
winter season has fewer bias estimates for all the risk measures 
as opposed to the winter seasons.

4. COMPARISON ANALYSIS

Some of the posterior predicted tail probabilities for various extreme 
daily increases in peak electricity demand are given in Table 6. ξ's, 
σ's and μ's are simulated as discussed in the section on methodology 
and the empirical results show the GPD is a good distribution show 
that both the GSP distribution and the GPD are a good fit to the data. 
The density comparison of truncated intervals in Figure 2 shows 
that the truncated bootstrap intervals with sampling are much better 
to mimic the bootstrap intervals as this Figure shows that truncated 
bootstraps intervals are closer to the true value intervals.

Furthermore, the average computation of the risk measure indicates 
that Glue-VaR provides fewer bias estimates for the risk of extreme 
electricity consumption; giving the prediction power of 58.4% in 
the winter season and 84.4% in the non-winter season and finally 
giving the overall predictive power of 89.7%.

5. RETURN LEVEL PERIODS AND 
BOOTSTRAPPING UNCERTAINTY 

INTERVALS

The performance of two distributions as a function of return 
period T is explored. Persson et al. (2010), disclosed that it is not 
phenomenal to calculate return periods as high as 10,000 years, 
relating to small risk. Therefore, 10 months, 20 months and 50 
months are used and the results are reported in Table 7. According 
to Table 7, the 20 month return period is 20799.7 kWh for winter 

Table 6: Posterior predictive tail probabilities
Winter Non-Winter

y0 (kwh) ( )0 0 ,p Y y y >

4000 0.0081 0.0261
4500 0.0280 0.0060
5000 0.0688 0.0106
5500 0.0150 0.1966

Table 7: Return level periods and uncertainty interval bootstraps
Period Winter Bootstrap Replicates 95% CI Non-Winter Bootstrap Replicates 95% CI
10 Months 20545.00 4000 (20544.96; 20545.04) 20834.62 2500 (20834.65; 20834.78)
20 Months 20799.70 4500 (20799.66; 20799.74) 21072.64 2500 (21072.48; 21116.60)
50 Months 21116.44 5000 (21116.40; 21116.48) 21329.57 2500 (21329.41; 21329.73)

Table 5: Average computation of risk measures
Model CI VaR ES CTE Glue-VaR Risk
Winter 95% 3.933 3.611 5.822 1.572

99% 3.492 3.217 8.562 3.074
Non-winters 95% 1.460 1.831 8.241 0.988

99% 1.460 2.311 10.549 2.226

Figure 2: Densities of truncated Bootstrap intervals
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electricity consumption, which means for every 20 months an 
average electricity consumption is 20799.7 kWh or more in 
SA with a probability of 5% is expected. But with non-winter 
consumption, for every 20 months, only 20799.7 kWh is expected 
to be exceeded on monthly average with the same probability of 
5%. The estimated bootstrap confidence intervals are not wide 
but nearer to the returns letting to conclude that the prediction 
performance of MCMC GPD is accurate giving a prediction 
power of 89.6% for winter and 85.65% for non-winter seasons 
respectively.

6. CONCLUSION AND RECOMMENDATIONS

Time series analysis and forecasting have been an active research 
area over the past decades. The accuracy of time series forecasting 
is fundamental to many decision processes and hence the 
research for improving the effectiveness of forecasting models 
has never stopped. This paper makes use of EVT to forecast 
uncertainty intervals for a return period of extreme daily electricity 
consumption in SA. To achieve this objective, a Bayesian MCMC 
is proposed and showed how it can be used in estimating the 
parameters of a three-parameter GPD. The importance of an 
MCMC approach is emphasised for parameter estimates as 
compared to other methods. A POT is also emphasised and the 
mean residual life and the Hills plots respectively are used to find 
an optimal threshold value. Based on the results of this study, the 
area of interest may have experienced too much extreme electricity 
consumption in the non-winter season than the winter season. This 
is however strange as in winter, more electricity is expected to 
be consumed because more people are consuming electricity for 
some other purposes such as heating in the house or workplaces. 
These empirical results showed that bootstrapping uncertainty 
intervals for the return period of extreme daily electricityhelp in 
determining critical peak months, and risk management including 
load shifting between transmission substations which is important 
for the stability of a power network.

Policy implications derived from this study are that policymakers 
and consumer side managers of electricity should play a 
fundamental role in attaining behavioural consumption of 
electricity, particularly during the non-winter season. In addition, 
there should be consumer response strategies designed for 
electricity consumers where the consumers will be exposed 
to inducements for time—of—day electricity pricing. Current 
developed technology for electricity billing such that is similar 
to mobile or landline billing technology should be improved and 
give a realistic day—time electricity billing.

Future studies may also adopt multivariate loss distributions 
and multivariate copula methods to test the interdependence and 
extreme relationships within the households and business sectors 
for the consumption of electricity and further uses machine 
learning methods to predict the extreme multivariate losses and 
the probability of interdependence and default and finally automate 
the models to long term solutions. Another area that requires 
future research is a probabilistic description and modelling of 
extreme peak loads using the Poison point process. This modelling 
approach helps in estimating the frequency of occurrence of peak 

losses. A sensitivity analysis concerning daily losses performed 
for each daily electricity consumption for winter and non-winter 
seasons and the development of a two-stage stochastic integer 
recourse model to optimise returns’ distribution is an interesting 
future research direction with SA n data.
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